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This paper studies the global regularity of classical solutions to
the 2D incompressible magnetohydrodynamic (MHD) equations
with horizontal dissipation and horizontal magnetic diffusion. It
is shown here that the horizontal component of any solution
admits a global (in time) bound in any Lebesgue space L2r with
1 � r < ∞ and the bound grows no faster than the order of√

r log r as r increases. In addition, we establish a conditional global
regularity in terms of the L2

t L∞
x -norm of the horizontal component

and the global regularity of a slightly regularized version of the
aforementioned MHD equations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The MHD equations govern the dynamics of the velocity and the magnetic field in electrically
conducting fluids such as plasmas and reflect the basic physics conservation laws. They have been
at the center of numerous analytical, experimental, and numerical investigations. One of the most
fundamental problems concerning the MHD equations is whether their classical solutions are globally
regular for all time or they develop singularities. This problem can be extremely difficult due to the
nonlinear coupling between the Navier–Stokes equations with a forcing induced by the magnetic field
and the induction equation. The 2D incompressible MHD equations concerned here can be represented
in the form
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⎧⎪⎨
⎪⎩

∂t u + u · ∇u = −∇p + ν1∂
2
x u + ν2∂

2
y u + b · ∇b,

∂tb + u · ∇b = η1∂
2
x b + η2∂

2
yb + b · ∇u,

∇ · u = 0, ∇ · b = 0,

(1.1)

where (x, y) ∈ R2, t � 0, u = (u1(x, y, t), u2(x, y, t)) denotes the 2D velocity field, p = p(x, y, t) the
pressure, b = (b1(x, y, t),b2(x, y, t)) the magnetic field, and ν1, ν2, η1 and η2 are nonnegative real
parameters. When ν1 = ν2 and η1 = η2, (1.1) reduces to the standard incompressible MHD equations.

When all four parameters ν1, ν2, η1 and η2 are positive, it is not hard to show that (1.1) pos-
sesses a unique global solution corresponding to sufficiently smooth initial data (see, e.g., [3,4]). If all
four parameters are zero, (1.1) becomes inviscid and the global regularity problem appears to be out
of reach. The intermediate cases when some of the parameters are positive have recently attracted
considerable attention (see, e.g., [1,5]). As far as we know, the only cases for which the global well-
posedness is known is when ν1 > 0, ν2 = 0, η1 = 0 and η2 > 0 or when ν1 = 0, ν2 > 0, η1 > 0 and
η2 = 0. The global regularity for these two cases was recently established by Cao and Wu [1]. A par-
tial answer for the case when ν1 = ν2 = 0, η1 > 0 and η2 > 0 was obtained in [1] and [5]. The MHD
equations in this case are shown to possess global H1 weak solutions. However, the uniqueness of
such weak solutions and a global H2-bound remain unknown. Many attempts have also been made
on the MHD equations with only dissipation, namely (1.1) with ν1 > 0, ν2 > 0, η1 = η2 = 0, but the
global regularity problem for this case remains open.

This paper is devoted to the case when ν1 > 0, ν2 = 0, η1 > 0 and η2 = 0, namely the MHD
equations with horizontal dissipation and horizontal magnetic diffusion

⎧⎪⎨
⎪⎩

∂t u + u · ∇u = −∇p + ∂2
x u + b · ∇b,

∂tb + u · ∇b = ∂2
x b + b · ∇u,

∇ · u = 0, ∇ · b = 0,

(1.2)

where we have set ν1 = η1 = 1. We do not have a complete solution to the global regularity problem
in this case. This paper presents several global a priori bounds and conditioned global regularity. In
addition, we obtain the global regularity for a slightly regularized version of (1.2), namely

⎧⎪⎨
⎪⎩

∂t u + u · ∇u + ε(−�)δu = −∇p + ∂2
x u + b · ∇b,

∂tb + u · ∇b + ε(−�)δb = ∂2
x b + b · ∇u,

∇ · u = 0, ∇ · b = 0

(1.3)

with ε > 0 and δ > 0. These results indicate that we are close to a resolution and therefore give us
confidence to predict the global regularity of (1.2).

Let us first try to understand the difficulty we would encounter when the energy method is ap-
plied. For any given sufficiently smooth datum

u(x, y,0) = u0(x, y), b(x, y,0) = b0(x, y),

say, (u0,b0) ∈ H2(R2), the corresponding solution obviously obeys global L2-bound. That is,

∥∥u(t)
∥∥2

2 + ∥∥b(t)
∥∥2

2 + 2

t∫
0

∥∥∂xu(τ )
∥∥2

2 dτ + 2

t∫
0

∥∥∂xb(τ )
∥∥2

2 dτ = ‖u0‖2
2 + ‖b0‖2

2, (1.4)

where we have written ‖ f ‖p to denote the L p-norm of f ∈ L p(R2) with 1 � p � ∞. The trouble
arises when we try to obtain the global H1-bound. If we resort to the equations for the vorticity
ω = ∇ × u and the current density j = ∇ × b, namely
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{
∂tω + u · ∇ω = ∂2

x ω + b · ∇ j,

∂t j + u · ∇ j = ∂2
x j + b · ∇ω + 2∂xb1(∂xu2 + ∂yu1) − 2∂xu1(∂xb2 + ∂yb1),

(1.5)

we then obtain

1

2

d

dt

(‖ω‖2
2 + ‖ j‖2

2

) + ‖∂xω‖2
2 + ‖∂x j‖2

2

= 2
∫

j
(
∂xb1(∂xu2 + ∂yu1) − 2∂xu1(∂xb2 + ∂yb1)

)
dx dy. (1.6)

In order to obtain suitable bounds for the terms on the right, we need the anisotropic Sobolev in-
equalities stated in the following lemma (see [1]).

Lemma 1.1. If f , g,h, ∂y g, ∂xh ∈ L2(R2), then

∫∫
R2

| f gh|dx dy � C‖ f ‖2‖g‖
1
2
2 ‖∂y g‖

1
2
2 ‖h‖

1
2
2 ‖∂xh‖

1
2
2 , (1.7)

where C is a constant.

If we apply (1.7), two terms on the right of (1.6),
∫

j∂xb1∂xu2 and
∫

j∂xu1∂xb2 can be bounded
suitably. Unfortunately, we do not know how to bound the other two terms in order to close the
inequality in (1.6). This is where the direct energy method breaks down.

Motivated by a recent work of Cao and Wu on the 2D Boussinesq equation with partial dissipation
[2], we explore here how the Lebesgue norm of the horizontal component (u1,b1) of a solution
would affect the global regularity. First, we are able to obtain a global a priori bound for the norm
‖(u1,b1)‖2r with 1 � r < ∞, where ‖ f ‖q with 1 � q � ∞ denotes the norm of a function f in the
Lebesgue space Lq . The precise statement for this global bound is given in Theorem 2.1 of Section 2.
The bound depends exponentially on r and we do not know whether or not ‖(u1,b1)‖∞ can be
bounded for all time. If we do know that

T∫
0

∥∥(u1,b1)
∥∥2

∞ dt < ∞, (1.8)

then we can actually show that the solution is regular on [0, T ]. This is the conditional global regu-
larity result established in Theorem 5.1 of Section 5.

Our main efforts are devoted to improving the global bound for ‖(u1,b1)‖2r . We are able to show
that ‖(u1,b1)‖2r � C

√
r log r for large r < ∞. More precisely, we have the following theorem.

Theorem 1.2. Assume that (u0,b0) ∈ H2(R2) and let (u,b) be the corresponding solution of (1.2). Let 2 <

r < ∞. Then,

∥∥(u1,b1)(t)
∥∥

2r � B0(t)
√

r log r + B1, (1.9)

where B0 is a smooth function of t and B1 depends only on ‖(u0,b0)‖2r .
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The proof of this theorem is presented in Section 4. It relies heavily on the global bounds on the
pressure p. As a preparation for Theorem 1.2, we first prove in Section 3 that the pressure associated
with any classical solution obeys the global bound, for any T > 0 and t < T ,

∥∥p(·, t)
∥∥

q � C(T ),

T∫
0

∥∥p(·, t)
∥∥2

Hs dt < C(T ),

where 1 < q � 3 and 0 < s < 1. We defy the details to Theorem 3.1 in Section 3. We are unable to
prove a global bound for the case when s = 1. These global bounds together with a decomposition of
the pressure into low and high frequency parts eventually lead to the global bound in Theorem 1.2.

The proofs of our results take advantage of the symmetric structure of (1.2). That is,

w± = u ± b

satisfies ⎧⎪⎨
⎪⎩

∂t w+ + (
w− · ∇)

w+ = −∇p + ∂2
x w+,

∂t w− + (
w+ · ∇)

w− = −∇p + ∂2
x w−,

∇ · w+ = 0, ∇ · w− = 0.

(1.10)

We remark that even this symmetric formulation is still more complex than the 2D Boussinesq equa-
tions dealt with in [2]. (1.10) consists of a system of two vector equations and the interaction between
them makes it more difficult mathematically. Due to the lack of the global bound for

∫ t
0 ‖p(τ )‖H1 dτ ,

the proof of Theorem 1.2 does not directly follow from the methods in [2] on the 2D Boussinesq equa-
tions. New tools such as the triple product estimate involving fractional derivatives (see Lemma 4.1)
are needed to cope with the more difficult situation here.

Finally we outline the plan for the rest of this paper. Section 2 presents a global bound for
‖(u1,b1)‖2r while Section 3 proves the global bounds for the pressure as well as several other global
bounds. Section 4 is mainly devoted to proving Theorem 1.2 and, as a preparation, an estimate for a
triple product involving fractional derivatives is provided. Section 5 proves the conditional global reg-
ularity under (1.8). The last section shows that the slightly regularized system (1.3) always possesses
global classical solutions.

2. A global bound in the Lebesgue spaces

Assume that (u,b) is a classical solution of (1.2). This section shows that its component in the x-
direction (u1,b1) admits a global (in time) bound in L2r(R2) for any 1 � r < ∞. The bound obtained
here depends exponentially on r. More precisely, we have the following theorem.

Theorem 2.1. Assume that (u0,b0) ∈ H2(R2) and let (u,b) be the corresponding solution of (1.2). Then, for
any 1 � r < ∞, (u1,b1) obeys the global bound

∥∥(u1,b1)
∥∥

2r � C1eC2r3
, (2.1)

where C1 and C2 are constants depending on ‖(u0,b0)‖2r only.

In order to prove this theorem, we need the global L2-bound.

Lemma 2.2. Let (u0,b0) ∈ H2(R2) and let (u,b) be the corresponding solution of (1.2). Then, (u,b) obeys the
following global L2-bound,
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∥∥u(t)
∥∥2

2 + ∥∥b(t)
∥∥2

2 + 2

t∫
0

∥∥∂xu(τ )
∥∥2

2 dτ + 2

t∫
0

∥∥∂xb(τ )
∥∥2

2 dτ � ‖u0‖2
2 + ‖b0‖2

2 (2.2)

for any t � 0.

Proof of Theorem 2.1. It is more convenient to use the symmetric form of (1.2), namely (1.10). Multi-
plying the first component of the first equation of (1.10) by w+

1 |w+
1 |2r−2 and integrating with respect

to space variable, we obtain, after integration by parts,

1

2r

d

dt

∥∥w+
1

∥∥2r
2r + (2r − 1)

∫ ∣∣∂x w+
1

∣∣2∣∣w+
1

∣∣2r−2 = (2r − 1)

∫
p∂x w+

1

∣∣w+
1

∣∣2r−2
. (2.3)

By Hölder’s and Sobolev’s inequalities,

∫
p∂x w+

1

∣∣w+
1

∣∣2r−2 � ‖p‖2r
∥∥∂x w+

1

∣∣w+
1

∣∣r−1∥∥
2

∥∥∣∣w+
1

∣∣r−1∥∥ 2r
r−1

� Cr‖∇p‖ 2r
r+1

∥∥∂x w+
1

∣∣w+
1

∣∣r−1∥∥
2

∥∥w+
1

∥∥r−1
2r ,

where C is a constant independent of r. Therefore, by Young’s inequality,

(2r − 1)

∫
p∂x w+

1

∣∣w+
1

∣∣2r−2 � 2r − 1

4

∥∥∂x w+
1

∣∣w+
1

∣∣r−1∥∥2
2 + Cr3

∥∥∇p
∥∥2

2r
r+1

∥∥w+
1

∥∥2(r−1)

2r .

To bound the pressure, we take the divergence of (1.10) to get

−�p = ∂x
(

w−
1 ∂x w+

1 + w+
1 ∂x w−

1

) + ∂y
(

w+
1 ∂x w−

2 + w−
1 ∂x w+

2

)
. (2.4)

Due to the boundedness of Riesz transforms on Lq for any 1 < q < ∞, we have

‖∇p‖ 2r
r+1

�
∥∥w−

1 ∂x w+
1

∥∥ 2r
r+1

+ ∥∥w+
1 ∂x w−

1

∥∥ 2r
r+1

+ ∥∥w+
1 ∂x w−

2

∥∥ 2r
r+1

+ ∥∥w−
1 ∂x w+

2

∥∥ 2r
r+1

�
∥∥w−

1

∥∥
2r

(∥∥∂x w+
1

∥∥
2 + ∥∥∂x w+

2

∥∥
2

) + ∥∥w+
1

∥∥
2r

(∥∥∂x w−
1

∥∥
2 + ∥∥∂x w−

2

∥∥
2

)
. (2.5)

Consequently,

Cr3‖∇p‖2
2r

r+1

∥∥w+
1

∥∥2(r−1)

2r

� Cr3(∥∥∂x w+
1

∥∥2
2 + ∥∥∂x w+

2

∥∥2
2 + ∥∥∂x w−

1

∥∥2
2 + ∥∥∂x w−

2

∥∥2
2

)(∥∥w−
1

∥∥
2r + ∥∥w+

1

∥∥
2r

)2∥∥w+
1

∥∥2(r−1)

2r

� Cr3(∥∥∂x w+
1

∥∥2
2 + ∥∥∂x w+

2

∥∥2
2 + ∥∥∂x w−

1

∥∥2
2 + ∥∥∂x w−

2

∥∥2
2

)(∥∥w+
1

∥∥2r
2r + ∥∥w−

1

∥∥2r
2r

)
.

Combining the estimates above, we obtain

1

r

d

dt

∥∥w+
1

∥∥2r
2r + (2r − 1)

2

∫ ∣∣∂x w+
1

∣∣2∣∣w+
1

∣∣2r−2

� Cr3(∥∥∂x w+
1

∥∥2
2 + ∥∥∂x w+

2

∥∥2
2 + ∥∥∂x w−

1

∥∥2
2 + ∥∥∂x w−

2

∥∥2
2

)(∥∥w+
1

∥∥2r
2r + ∥∥w−

1

∥∥2r
2r

)
.

Similarly,
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1

r

d

dt

∥∥w−
1

∥∥2r
2r + (2r − 1)

2

∫ ∣∣∂x w−
1

∣∣2∣∣w−
1

∣∣2r−2

� Cr3(∥∥∂x w+
1

∥∥2
2 + ∥∥∂x w+

2

∥∥2
2 + ∥∥∂x w−

1

∥∥2
2 + ∥∥∂x w−

2

∥∥2
2

)(∥∥w+
1

∥∥2r
2r + ∥∥w−

1

∥∥2r
2r

)
.

Adding these two inequalities yields

1

r

d

dt

(∥∥w+
1

∥∥2r
2r + ∥∥w−

1

∥∥2r
2r

) + (2r − 1)

2

∫ (∣∣∂x w+
1

∣∣2∣∣w+
1

∣∣2r−2 + ∣∣∂x w−
1

∣∣2∣∣w−
1

∣∣2r−2)
� Cr3(∥∥∂x w+

1

∥∥2
2 + ∥∥∂x w+

2

∥∥2
2 + ∥∥∂x w−

1

∥∥2
2 + ∥∥∂x w−

2

∥∥2
2

)(∥∥w+
1

∥∥2r
2r + ∥∥w−

1

∥∥2r
2r

)
.

It then follows from Gronwall’s inequality that

∥∥w+
1

∥∥2r
2r + ∥∥w−

1

∥∥2r
2r �

(∥∥w+
1 (0)

∥∥2r
2r + ∥∥w−

1 (0)
∥∥2r

2r

)

× exp

(
Cr4

t∫
0

(∥∥∂x w+
1

∥∥2
2 + ∥∥∂x w+

2

∥∥2
2 + ∥∥∂x w−

1

∥∥2
2 + ∥∥∂x w−

2

∥∥2
2

)
dτ

)
.

This inequality together with (2.2) then yields (2.1). �
3. Global bounds for the pressure

Several more global a priori bounds are established in this section. First we provide the L2r -bounds
for the second components (u2,b2) when r = 2 and 3. Then we establish two global bounds for the
pressure: one for ‖p‖q with 1 < q � 3 and one for

∫ t
0 ‖p(τ )‖2

Hs dτ with s ∈ [0,1). The precise results
can be stated as follows.

Theorem 3.1. Assume that (u0,b0) ∈ H2(R2) and let (u,b) be the corresponding solution of (1.2). Let p be
the corresponding pressure. Let s ∈ (0,1). Then, for any T > 0 and t � T ,

∥∥(u2,b2)(t)
∥∥

2r � C, r = 2,3, (3.1)

and, for any 1 < q � 3,

∥∥p(t)
∥∥

q � C,

T∫
0

∥∥p(τ )
∥∥2

Hs dτ < C, (3.2)

where C is a constant depending on T and the initial data.

Proof. There does not appear to be a uniform approach to prove the bounds in (3.1) simultaneously
for r = 2 and r = 3. We prove them separately and start with the L4-bound. It is more convenient to
use the symmetric form (1.10). Multiplying the second component of the first equation of (1.10) by
w+

2 |w+
2 |2 and integrating by parts yield

1

4

d

dt

∥∥w+
2

∥∥4
4 + 3

∫ ∣∣∂x w+
2

∣∣2∣∣w+
2

∣∣2 = 3
∫

p∂y w+
2

∣∣w+
2

∣∣2
.

To bound the term on the right, we use ∇ · w+ = 0 and integrate by parts to get
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∫
p∂y w+

2

∣∣w+
2

∣∣2 = −
∫

p∂x w+
1

∣∣w+
2

∣∣2

=
∫

∂x pw+
1

∣∣w+
2

∣∣2 + 2
∫

pw+
1 ∂x w+

2 w+
2

= J1 + 2 J2. (3.3)

By Hölder’s and Sobolev’s inequalities,

| J2| � ‖p‖4
∥∥w+

1

∥∥
4

∥∥w+
2 ∂x w+

2

∥∥
2

� C‖∇p‖ 4
3

∥∥w+
1

∥∥
4

∥∥w+
2 ∂x w+

2

∥∥
2.

According to (2.5),

‖∇p‖ 4
3

�
∥∥w−

1

∥∥
4

(∥∥∂x w+
1

∥∥
2 + ∥∥∂x w+

2

∥∥
2

) + ∥∥w+
1

∥∥
4

(∥∥∂x w−
1

∥∥
2 + ∥∥∂x w−

2

∥∥
2

)
.

Therefore, by Young’s inequality,

| J2| � 1

16

∥∥w+
2 ∂x w+

2

∥∥2
2

+ C
(∥∥w−

1

∥∥4
4 + ∥∥w+

1

∥∥4
4

)(∥∥∂x w+
1

∥∥2
2 + ∥∥∂x w+

2

∥∥2
2 + ∥∥∂x w−

1

∥∥2
2 + ∥∥∂x w−

2

∥∥2
2

)
.

To bound J1, we first apply Hölder’s inequality,

| J1| �
∥∥∂x p

∥∥ 8
5

∥∥w+
1

∥∥
8

∥∥(
w+

2

)2∥∥
4.

By Lemma 3.2 below and ∇ · w+ = 0,

∥∥(
w+

2

)2∥∥
4 � C

∥∥∂x
(

w+
2

)2∥∥ 1
2
2

∥∥∂y
(

w+
2

)2∥∥ 1
2
1 � C

∥∥w+
2 ∂x w+

2

∥∥ 1
2
2

∥∥w+
2 ∂x w+

1

∥∥ 1
2
1 .

According to (2.5),

‖∇p‖ 8
5

� C
∥∥w−

1

∥∥
8

(∥∥∂x w+
1

∥∥
2 + ∥∥∂x w+

2

∥∥
2

) + ∥∥w+
1

∥∥
8

(∥∥∂x w−
1

∥∥
2 + ∥∥∂x w−

2

∥∥
2

)
� C

(∥∥w−
1

∥∥
8 + ∥∥w+

1

∥∥
8

)(∥∥∂x w−∥∥
2 + ∥∥∂x w+∥∥

2

)
.

Therefore,

| J1| � C
∥∥w+

1

∥∥
8

(∥∥w−
1

∥∥
8 + ∥∥w+

1

∥∥
8

)(∥∥∂x w−∥∥
2 + ∥∥∂x w+∥∥

2

)∥∥w+
2 ∂x w+

2

∥∥ 1
2
2

∥∥w+
2 ∂x w+

1

∥∥ 1
2
1

� 1

16

∥∥w+
2 ∂x w+

2

∥∥2
2

+ C
(∥∥∂x w−∥∥2

2 + ∥∥∂x w+∥∥2
2

) + ∥∥w+
1

∥∥4
8

(∥∥w−
1

∥∥
8 + ∥∥w+

1

∥∥
8

)4∥∥w+
2

∥∥2
2

∥∥∂x w+
1

∥∥2
2.

Inserting the estimates for J1 and J2 in (3.3) and recalling Theorem 2.1, we obtain a global bound for
‖w+

2 ‖4. The bound for ‖w2
−‖4 < C can be similarly established.

To prove the L6-bound in (3.1), we obtain from (1.10) that



Author's personal copy

2668 C. Cao et al. / J. Differential Equations 254 (2013) 2661–2681

1

6

d

dt

(∥∥w+
2

∥∥6
6 + ∥∥w−

2

∥∥6
6

) + 5
∥∥∣∣w+

2

∣∣2∣∣∂x w+
2

∣∣∥∥2
2 + 5

∥∥∣∣w−
2

∣∣2∣∣∂x w−
2

∣∣∥∥2
2

= 5
∫

p
(∣∣w+

2

∣∣4
∂y w+

2 + ∣∣w−
2

∣∣4
∂y w−

2

)
= −5

∫
p
(∣∣w+

2

∣∣4
∂x w+

1 + ∣∣w−
2

∣∣4
∂x w−

1

)
= 5

∫
∂x p

(∣∣w+
2

∣∣4
w+

1 + ∣∣w−
2

∣∣4
w−

1

) + 20
∫

p
(∣∣w+

2

∣∣3
∂x w+

2 w+
1 + ∣∣w−

2

∣∣3
∂x w−

2 w−
1

)
.

Applying Hölder’s inequality, (2.4) and Lemma 3.2, we have

∫
∂x p

(∣∣w+
2

∣∣4
w+

1 + ∣∣w−
2

∣∣4
w−

1

)
�

∥∥∂x p
∥∥ 36

19

(∥∥∣∣w+
2

∣∣3∥∥4/3
3

∥∥w+
1

∥∥
36 + ∥∥∣∣w−

2

∣∣3∥∥4/3
3

∥∥w−
1

∥∥
36

)
� C

(∥∥w+
1

∥∥
36 + ∥∥w−

1

∥∥
36

)2(∥∥∂x w+∥∥
2 + ∥∥∂x w−∥∥

2

)
× (∥∥∂y

∣∣w+
2

∣∣3∥∥ 4
9
1

∥∥∂x
∣∣w+

2

∣∣3∥∥ 4
9
2

∥∥∣∣w+
2

∣∣3∥∥ 4
9
2 + ∥∥∂y

∣∣w−
2

∣∣3∥∥ 4
9
1

∥∥∂x
∣∣w−

2

∣∣3∥∥ 4
9
2

∥∥∣∣w−
2

∣∣3∥∥ 4
9
2

)
� C

(∥∥w+
1

∥∥
36 + ∥∥w−

1

∥∥
36

)2(∥∥∂x w+∥∥
2 + ∥∥∂x w−∥∥

2

)(∥∥∣∣w+
2

∣∣3∥∥ 4
9
2 + ∥∥∣∣w−

2

∣∣3∥∥ 4
9
2

)
× (∥∥w+

2

∥∥ 8
9
4

∥∥∂y w+
2

∥∥ 4
9
2 + ∥∥w−

2

∥∥ 8
9
4

∥∥∂y w−
2

∥∥ 4
9
2

)(∥∥∂x
∣∣w+

2

∣∣3∥∥ 4
9
2 + ∥∥∂x

∣∣w−
2

∣∣3∥∥ 4
9
2

)
.

Also, by Hölder’s inequality and (2.4),

∫
p
(∣∣w+

2

∣∣3
∂x w+

2 w+
1 + ∣∣w−

2

∣∣3
∂x w−

2 w−
1

)
�

∥∥p
∥∥

6

(∥∥w+
2

∥∥
6

∥∥∣∣w+
2

∣∣2
∂x w+

2

∥∥
2

∥∥w+
1

∥∥
6 + ∥∥w−

2

∥∥
6

∥∥∣∣w−
2

∣∣2
∂x w−

2

∥∥
2

∥∥w−
1

∥∥
6

)
� C

(∥∥w+
1

∥∥
6 + ∥∥w−

1

∥∥
6

)(∥∥∂x w+∥∥
2 + ∥∥∂x w−∥∥

2

)
× (∥∥w+

1

∥∥
6

∥∥∣∣w+
2

∣∣2
∂x w+

2

∥∥
2

∥∥w+
2

∥∥
6 + ∥∥w−

1

∥∥
6

∥∥∣∣w−
2

∣∣2
∂x w−

2

∥∥
2

∥∥w−
2

∥∥
6

)
.

Therefore, by Young’s and Gronwall’s inequalities,

∥∥w+
2

∥∥6
6 + ∥∥w−

2

∥∥6
6 +

t∫
0

(∥∥∣∣w+
2

∣∣2∣∣∂x w+
2

∣∣∥∥2
2 + ∥∥∣∣w−

2

∣∣2∣∣∂x w−
2

∣∣∥∥2
2

)
� C .

We now prove the first inequality in (3.2). Taking the divergence of the first two equations in
(1.10), we have

−�p = ∇ · (w− · ∇w+)
.

By the boundedness of Riesz transforms on Lq ,

‖p‖q � C
∥∥w−∥∥

2q

∥∥w+∥∥
2q.
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For 1 < q � 3, ‖w−‖2q and ‖w+‖2q are bounded according to Theorem 2.1 and (3.1) and thus
‖p‖q < C .

Now we prove the second inequality in (3.2). Recall that the operator Λs is defined through its
Fourier transform, namely

Λ̂s f (ξ) = |ξ |s f̂ (ξ).

Combining (2.4), the boundedness of Riesz transforms on L2 and the Hardy–Littlewood–Sobolev in-
equality, we have

∥∥Λs p
∥∥

2 �
∥∥Λs(−�)−1∂x

(
w−

1 ∂x w+
1 + w+

1 ∂x w−
1

)∥∥
2 + ∥∥Λs(−�)−1∂y

(
w+

1 ∂x w−
2 + w−

1 ∂x w+
2

)∥∥
2

�
∥∥Λ−(1−s)(w−

1 ∂x w+
1 + w+

1 ∂x w−
1

)∥∥
2 + ∥∥Λ−(1−s)(w+

1 ∂x w−
2 + w−

1 ∂x w+
2

)∥∥
2

� C
∥∥w−

1 ∂x w+
1 + w+

1 ∂x w−
1

∥∥
q + ∥∥w+

1 ∂x w−
2 + w−

1 ∂x w+
2

∥∥
q

� C
(∥∥∂x w+∥∥

2 + ∥∥∂x w−∥∥
2

)(∥∥w+
1

∥∥ 2
1−s

+ ∥∥w−
1

∥∥ 2
1−s

)
,

where q satisfies 1
q = 1

2 + 1−s
2 and C is a constant independent of s. This completes the proof of

Theorem 3.1. �
We have used two calculus inequalities of the following lemma.

Lemma 3.2. Assume that f ∈ L2(R2), ∂x f ∈ L1(R2) and ∂y f ∈ L2(R2). Then

‖ f ‖4 �
√

3‖∂x f ‖
1
2
1 ‖∂y f ‖

1
2
2 , (3.4)

‖ f ‖3 � 3
√

2‖ f ‖
1
3
2 ‖∂x f ‖

1
3
1 ‖∂y f ‖

1
3
2 . (3.5)

Proof. We prove (3.4) and the proof of (3.5) is similar. Writing

f 4(x, y) = f 3(x, y) f (x, y) =
x∫

−∞
∂z

(
f 3(z, y)

)
dz

y∫
−∞

∂z f (x, z)dz,

integrating in (x, y) ∈ R2 and applying Hölder’s inequality yield (3.4). �
4. An improved global Lebesgue bound

This section establishes the improved global bound for ‖(u1,b1)‖L2r , which states that ‖(u1,b1)‖L2r

grows at most at the order of
√

r log r. We have already stated the precise result in Theorem 1.2 in
the Introduction and we now prove it.

In order to prove this theorem, we need several facts that we now state and prove.

Lemma 4.1. Let q ∈ [2,∞) and s ∈ ( 1
2 ,1]. Assume that f , g, ∂y g ∈ L2(R2), h ∈ L2(q−1)(R2) and Λs

xh ∈
L2(R2). Then,

∣∣∣∣
∫∫

R2

f gh dx dy

∣∣∣∣ � C‖ f ‖2‖g‖ρ
2 ‖∂y g‖1−ρ

2 ‖h‖ϑ
2(q−1)

∥∥Λs
xh

∥∥1−ϑ

2 , (4.1)
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where ρ and ϑ are given by

ρ = 1

2
+ (2s − 1)(q − 2)

2(2s − 1)(q − 1) + 2
, ϑ = (2s − 1)(q − 1)

(2s − 1)(q − 1) + 1
,

and Λs
x denotes a fractional derivative with respect to x and is defined by

Λs
xh(x) =

∫
eix·ξ |ξ1|sĥ(ξ)dξ.

Proof. To prove this inequality, we recall the one-dimensional Sobolev inequality

‖h‖L∞
x (R) � C ‖h‖ϑ

L2(q−1)
x (R)

∥∥Λs
xh

∥∥1−ϑ

L2
x (R)

, (4.2)

where we have used the sub-index x with the Lebesgue spaces to emphasize that the norms are taken
in one-dimensional Lebesgue spaces with respect to x. By Hölder’s inequality and (4.2),

∣∣∣∣
∫∫

f gh dx dy

∣∣∣∣ � C

∫
‖ f ‖L2

x
‖g‖L2

x
‖h‖ϑ

L2(q−1)
x

∥∥Λs
xh

∥∥1−ϑ

L2
x

dy

� C

(∫
‖ f ‖2

L2
x

dy

) 1
2
(∫

‖g‖μ

L2
x

dy

) 1
μ

×
(∫

‖h‖2(q−1)

L2(q−1)
x

dy

) ϑ
2(q−1)

(∫ ∥∥Λs
xh

∥∥2
L2

x
dy

) (1−ϑ)
2

= C‖ f ‖2‖g‖L2
x Lμ

y
‖h‖ϑ

2(q−1)

∥∥Λs
xh

∥∥1−ϑ

2 , (4.3)

where μ = 2(q − 1)/(ϑ(q − 2)). Clearly, μ � 2. By Minkowski’s inequality followed by a Sobolev in-
equality,

‖g‖L2
x Lμ

y
� ‖g‖Lμ

y L2
x
� C‖g‖ρ

2 ‖∂y g‖1−ρ
2 . (4.4)

Inserting (4.4) in (4.3) then yields the desired inequality in (4.1). �
The following lemma allows us to bound the high frequency and low frequency parts of a function

in Hs (0 < s < 1) separately.

Lemma 4.2. Let f ∈ Hs(R2) with s ∈ (0,1). Let R ∈ (0,∞). Denote by B(0, R) the ball centered at zero with
radius R and by χB(0,R) the characteristic function on B(0, R). Write

f = f + f̃ with f =F−1(χB(0,R)F f ) and f̃ =F−1((1 − χB(0,R))F f
)
, (4.5)

where F and F−1 denote the Fourier transform and the inverse Fourier transform, respectively. Then we have
the following estimates for f and f̃ .

(1) For a pure constant C0 (independent of s),

‖ f ‖∞ � C0√
1 − s

R1−s‖ f ‖Hs(R2). (4.6)
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(2) For any 2 � q < ∞ satisfying 1 − s − 2
q < 0, there is a constant C1 independent of s, q, R and f such that

‖ f̃ ‖q � C1qR1−s− 2
q ‖ f ‖Hs(R2). (4.7)

This lemma complements Lemma 2.3 in [2]. The lemma there involves H1-functions while this
lemma allows to deal with Hs-functions with s ∈ (0,1). This lemma can be similarly proven as
Lemma 2.3 of [2], so the details are omitted.

We also recall Lemma 2.4 of [2].

Lemma 4.3. Let 1 < q < ∞. Let f ∈ Lq(Rd) and let f̃ be defined as in (4.5). Then, there exists a constant C
depending on q only such that

‖ f̃ ‖q � C‖ f ‖q.

We are now ready to prove the main theorem of this section.

Proof of Theorem 1.2. As in the proof of Theorem 2.1, we use the symmetric form (1.10) and start
with (2.3) with r > 2, namely

1

2r

d

dt

∥∥w+
1

∥∥2r
2r + (2r − 1)

∫ ∣∣∂x w+
1

∣∣2∣∣w+
1

∣∣2r−2 = (2r − 1)

∫
p∂x w+

1

∣∣w+
1

∣∣2r−2
. (4.8)

The term on the right will be treated differently. To start, we fix R > 0 (to be specified later) and
write

(2r − 1)

∫
p∂x w+

1

∣∣w+
1

∣∣2r−2 = J1 + J2,

where

J1 = (2r − 1)

∫
p∂x w+

1

∣∣w+
1

∣∣2r−2
, J2 = (2r − 1)

∫
p̃∂x w+

1

∣∣w+
1

∣∣2r−2

with p and p̃ as defined in (4.5). To estimate J1 and J2, we choose two parameters s and q satisfying

√
5 − 1

2
< s < 1, 2 < q � 5

2
,

3

2
+ 1

2(2s − 1)
< q < 1 + 1

1 − s
. (4.9)

The technical constraints in (4.9) will become clear later. By Hölder’s and Young’s inequalities, we find

| J1| � (2r − 1)‖p‖∞
∥∥∣∣w+

1

∣∣r−1∥∥
2

∥∥∂x w+
1

(
w+

1

)r−1∥∥
2

� (2r − 1)‖p‖2∞
∥∥∣∣w+

1

∣∣r−1∥∥2
2 + 2r − 1

4

∥∥∂x w+
1

(
w+

1

)r−1∥∥2
2.

Assuming s and q satisfying (4.9) and applying Lemma 4.2, we have

‖p‖∞ � C0√
1 − s

R1−s‖p‖Hs , (4.10)

where C0 is a constant independent of s. In the rest of the proof we pay special attention to whether
a constant is bounded uniformly as s → 1− . By (4.10) and the interpolation inequality
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∫ (
w+

1

)2r−2 �
∥∥w+

1

∥∥ 2
r−1
2

∥∥w+
1

∥∥ 2r2−4r
r−1

2r , (4.11)

we have

| J1| � 2r − 1

4

∥∥∂x w+
1

(
w+

1

)r−1∥∥2
2

+ C2
0

1 − s
(2r − 1)R2(1−s)‖p‖2

Hs

∥∥w+
1

∥∥ 2
r−1
2

∥∥w+
1

∥∥ 2r2−4r
r−1

2r , (4.12)

where C0 is independent of s. To bound J2, we first apply Lemma 4.1 to obtain

| J2| � C(2r − 1)
∥∥∂x w+

1

∣∣w+
1

∣∣r−1∥∥
2‖p̃‖ϑ

2(q−1)

∥∥Λs
y p̃

∥∥1−ϑ

2

∥∥∣∣w+
1

∣∣r−1∥∥ρ

2

∥∥∂x
(

w+
1

)r−1∥∥1−ρ

2

where s and q satisfy (4.9), ϑ and ρ are given explicitly in terms of s and q,

ϑ = (2s − 1)(q − 1)

(2s − 1)(q − 1) + 1
, ρ = 1

2
+ (2s − 1)(q − 2)

2[(2s − 1)(q − 1) + 1] , (4.13)

and C is bounded uniformly as s → 1− . According to (4.11), we have

∥∥∣∣w+
1

∣∣r−1∥∥ρ

2 �
∥∥w+

1

∥∥ ρ
r−1
2

∥∥w+
1

∥∥ ρ(r2−2r)
(r−1)

2r .

By Hölder’s inequality,

∥∥∂x
(

w+
1

)r−1∥∥1−ρ

2 = (r − 1)1−ρ

(∫ (
∂x w+

1

)2(
w+

1

)2(r−2)
) 1

2 (1−ρ)

= (r − 1)1−ρ

(∫ (
∂x w+

1

) 2
r−1

(
∂x w+

1

) 2(r−2)
r−1

(
w+

1

)2(r−2)
) 1

2 (1−ρ)

= (r − 1)1−ρ
∥∥∂x w+

1

∥∥ 1−ρ
r−1

2

(∫ (
w+

1

)2(r−1)(
∂x w+

1

)2
) (r−2)(1−ρ)

2(r−1)

.

Therefore, by Young’s inequality,

| J2| � C(2r − 1)(r − 1)1−ρ
∥∥∂x w+

1

∥∥ 1−ρ
r−1

2

∥∥w+
1

∥∥ ρ
r−1
2

∥∥w+
1

∥∥ ρ(r2−2r)
r−1

2r

× ‖p̃‖ϑ
2(q−1)

∥∥Λs p̃
∥∥1−ϑ

2

(∫ (
∂x w+

1

)2(
w+

1

)2r−2
) 1

2 + (r−2)(1−ρ)
2(r−1)

� 2r − 1

4

∫ (
∂x w+

1

)2(
w+

1

)2r−2 + C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ
∥∥w+

1

∥∥ 2ρ
σ

2

× ∥∥∂x w+
1

∥∥ 2(1−ρ)
σ

2

∥∥w+
1

∥∥ 2ρ(r2−2r)
σ

2r ‖p̃‖
2ϑ(r−1)

σ
2(q−1)

∥∥Λs p̃
∥∥ 2(1−ϑ)(r−1)

σ
2 , (4.14)

where C is again bounded uniformly as s → 1− , and, for notational convenience, we have written
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σ = (r − 1) − (1 − ρ)(r − 2) = 1 + ρr − 2ρ. (4.15)

To further the estimate, we split ‖p̃‖2(q−1) into two parts and bound one of them via Lemma 4.2.
More precisely, we have, for any 0 � β � 1,

‖p̃‖2(q−1) = ‖p̃‖1−β

2(q−1)‖p̃‖β

2(q−1)

� C‖p̃‖1−β

2(q−1)R(1−s− 1
q−1 )β‖p‖β

Hs

� C‖p‖1−β

2(q−1)R(1−s− 1
q−1 )β‖p‖β

Hs , (4.16)

where the last inequality follows from Lemma 4.3 and C is a constant independent of s. Due to the

condition on s and q in (4.9), this bound allows us to generate R(1−s− 1
q−1 )β with (1 − s − 1

q−1 )β � 0.
Inserting (4.16) in (4.14) yields

| J2| � 2r − 1

4

∫ (
∂x w+

1

)2(
w+

1

)2r−2

+ C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1 )β

2ϑ(r−1)
σ

∥∥w+
1

∥∥ 2ρ
σ

2

× ∥∥∂x w+
1

∥∥ 2(1−ρ)
σ

2

∥∥w+
1

∥∥ 2ρ(r2−2r)
σ

2r ‖p‖(1−β)
2ϑ(r−1)

σ
2(q−1) ‖p‖β

2ϑ(r−1)
σ + 2(1−ϑ)(r−1)

σ
Hs ,

where, again, C is bounded uniformly as s → 1− . We choose β so that the sum of the powers of
‖∂x w+

1 ‖2 and of ‖p‖Hs is equal to 2, namely

2(1 − ρ)

σ
+ β

2ϑ(r − 1)

σ
+ 2(1 − ϑ)(r − 1)

σ
= 2.

Recalling (4.13) and (4.15), we find that

β = (2s − 1)(2q − 3) − 1

(2q − 2)(2s − 1)
. (4.17)

The condition in (4.9) guarantees that 0 < β � 1. Then

∥∥∂x w+
1

∥∥ 2(1−ρ)
σ

2 ‖p‖β
2ϑ(r−1)

σ + 2(1−ϑ)(r−1)
σ

Hs � C
(∥∥∂x w+

1

∥∥2
2 + ‖p‖2

Hs

)
.

Therefore, for β given by (4.17), we have

| J2| � 2r − 1

4

∫ (
∂x w+

1

)2(
w+

1

)2r−2

+ C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1 )β

2ϑ(r−1)
σ

∥∥w+
1

∥∥ 2ρ
σ

2

× ‖p‖(1−β)
2ϑ(r−1)

σ
2(q−1)

(∥∥∂x w+
1

∥∥2
2 + ‖p‖2

Hs

)∥∥w+
1

∥∥ 2ρ(r2−2r)
σ

2r . (4.18)

Combining (4.8), (4.12) and (4.18), we obtain
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1

2r

d

dt

∥∥w+
1

∥∥2r
2r + 2r − 1

4

∫ ∣∣∂x w+
1

∣∣2∣∣w+
1

∣∣2r−2

�
C2

0

1 − s
(2r − 1)R2(1−s)‖p‖2

Hs

∥∥w+
1

∥∥ 2
r−1
2

∥∥w+
1

∥∥ 2r2−4r
r−1

2r

+ C(2r − 1)(r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1 )β

2ϑ(r−1)
σ

∥∥w+
1

∥∥ 2ρ
σ

2

× ‖p‖(1−β)
2ϑ(r−1)

σ
2(q−1)

(∥∥∂x w+
1

∥∥2
2 + ‖p‖2

Hs

)∥∥w+
1

∥∥ 2ρ(r2−2r)
σ

2r (4.19)

where C0 is independent of s and C is bounded uniformly as s → 1− . We now choose R so that

R2(1−s) = (r − 1)
2(1−ρ)(r−1)

σ R(1−s− 1
q−1 )β

2ϑ(r−1)
σ .

Solving this equation for R , we find

R2(1−s) = (r − 1)

2(1−s)(1−ρ)(r−1)

(1−s)σ+βϑ(s−1+ 1
q−1 )(r−1)

.

We then use (4.13), (4.15) and (4.17) to simplify this index and obtain

2(1 − s)(1 − ρ)(r − 1)

(1 − s)σ + βϑ(s − 1 + 1
q−1 )(r − 1)

= 2(1 − s)(q − 1)

q − 2 + (r − 1)−1(1 − s)(q − 1)
.

We denote this index by δ,

δ ≡ 2(1 − s)(q − 1)

q − 2 + (r − 1)−1(1 − s)(q − 1)
(4.20)

and therefore R2(1−s) = (r − 1)δ . Clearly, δ → 0 as s → 1, and

1

1 − s
= q − 1

q − 2

(
2 − δ

r − 1

)
1

δ
� 2q − 2

q − 2

1

δ
.

In addition, we notice that

2r2 − 4r

r − 1
� 2r − 2,

2ρ(r2 − 2r)

σ
� 2r − 2.

Without loss of generality, we assume ‖w+
1 ‖2r � 1. It then follows from (4.19) that

d

dt

∥∥w+
1

∥∥2
2r � C

δ
B(t)(2r − 1)(r − 1)δ, (4.21)

where C is bounded uniformly as δ → 0+ , and

B(t) = ‖p‖2
Hs

∥∥w+
1

∥∥ 2
r−1
2 + ∥∥w+

1

∥∥ 2ρ
σ

2 ‖p‖(1−β)
2ϑ(r−1)

σ
2(q−1)

(∥∥∂x w+
1

∥∥2
2 + ‖p‖2

Hs

)
.

Since (4.21) holds for any δ > 0, we set

δ = 1

log(r − 1)
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to obtain the optimal upper bound

d

dt

∥∥w+
1

∥∥2
2r � C B(t)(2r − 1) log(r − 1). (4.22)

After δ is selected, we then choose s and q satisfying (4.9) to fulfill (4.20). Since we have chosen
2 < q � 5

2 , we have 2 < 2(q − 1) � 3 and, according to Theorem 3.1, B(t) is integrable on any time
interval. We obtain (1.9) after integrating (4.22) in time. This completes the proof of Theorem 1.2. �
5. Conditional global regularity

This section establishes the global bounds for ‖(u,b)‖H2 in terms of the norms of the horizontal
components u1 and b1 in L2

t L∞
x . More precisely, we have the following theorem.

Theorem 5.1. Assume (u0,b0) ∈ H2(R2) and let (u,b) be the corresponding solution of (1.2). If

T∫
0

∥∥(u1,b1)(t)
∥∥2

∞ dt < ∞

for some T > 0, then ‖(u,b)‖H2 is finite on [0, T ].

The proof of this theorem is divided into two major parts. The first part bounds the H1-norm
while the second bounds the H2-norm.

5.1. H1 in terms of ‖(u1,b1)‖L2
t L∞

x

This subsection proves the following proposition.

Proposition 5.2. Assume (u0,b0) ∈ H2(R2) and let (u,b) be the corresponding solution of (1.2). Then, for
any T > 0 and t � T ,

∥∥(u,b)(t)
∥∥

H1 � C1eC2
∫ t

0 (‖u1(τ )‖2∞+‖b1(τ )‖2∞)dτ , (5.1)

where C1 depends on T and the initial data only and C2 is a pure constant.

Proof. Taking the inner product of the first equation of (1.10) with �w+ and integrating by parts, we
find

1

2

d

dt

∥∥∇w+∥∥2
2 + ∥∥∂x∇w+∥∥2

2 = I1 + I2 + I3 + I4 + I5 + I6,

where

I1 =
∫

∂x w−
1 ∂x w+

2 ∂x w+
2 , I2 =

∫
∂x w−

2 ∂y w+
1 ∂x w+

1 , I3 =
∫

∂x w−
2 ∂y w+

2 ∂x w+
2 ,

I4 =
∫

∂y w−
1 ∂x w+

1 ∂y w+
1 , I5 =

∫
∂y w−

1 ∂x w+
2 ∂y w+

2 , I6 =
∫

∂y w−
2 ∂y w+

1 ∂y w+
1 .

The terms can be bounded as follows. By Lemma 1.1,
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|I1| � C
∥∥∂x w−

1

∥∥
2

∥∥∂x w+
2

∥∥ 1
2
2

∥∥∂2
xx w2

∥∥ 1
2
2

∥∥∂x w+
2

∥∥ 1
2
2

∥∥∂2
xy w+

2

∥∥ 1
2
2

� C
∥∥∂x w−

1

∥∥
2

∥∥∂x w+
2

∥∥
2

∥∥∇∂x w+
2

∥∥
2

� 1

16

∥∥∇∂x w+
2

∥∥2
2 + C

∥∥∂x w−
1

∥∥2
2

∥∥∇w+
2

∥∥2
2.

Similarly,

|I2| � 1

16

∥∥∇∂x w+
1

∥∥2
2 + C

∥∥∂x w−
2

∥∥2
2

∥∥∇w+
1

∥∥2
2,

|I3| � 1

16

∥∥∇∂x w+
2

∥∥2
2 + C

∥∥∂x w−
2

∥∥2
2

∥∥∇w+
2

∥∥2
2.

Integrating by parts, we have

I4 = −
∫

∂2
xy w−

1 w+
1 ∂y w+

1 −
∫

∂y w−
1 w+

1 ∂2
xy w+

1 .

By Hölder’s inequality,

I4 � 2
∥∥w+

1

∥∥∞
∥∥∇∂x w−

1

∥∥
2

∥∥∇w−
1

∥∥
2

� 1

16

∥∥∇∂x w−
1

∥∥2
2 + C

∥∥w+
1

∥∥2
∞

∥∥∇w−
1

∥∥2
2.

I5 and I6 admit similar bounds as I4,

|I5| � 1

16

∥∥∇w+
x

∥∥2
2 + C

∥∥∂x w+∥∥2
2

∥∥∇w−
1

∥∥2
2,

|I6| � 1

16

∥∥∇∂x w+
1

∥∥2 + C
∥∥w−

1

∥∥2
∞

∥∥∇w+
1

∥∥2
2.

Similar estimates can be obtained for ∇w− . Combining them yields

d

dt

(∥∥∇w+∥∥2
2 + ∥∥∇w−∥∥2

2

) + (∥∥∂x∇w+∥∥2
2 + ∥∥∂x∇w−∥∥2

2

)
�

(∥∥∂x w+∥∥2
2 + ∥∥∂x w−∥∥2

2 + ∥∥w−
1

∥∥2
∞ + ∥∥w+

1

∥∥2
∞

)(∥∥∇w+∥∥2
2 + ∥∥∇w−∥∥2

2

)
.

Gronwall’s lemma then yields the desired L2-bound for (∇u,∇b). Combining with the global L2-
bound in Lemma 2.2 leads to (5.1). �
5.2. Proof of Theorem 5.1

With the global bounds for the H1-norm at our disposal, the goal of this subsection is to complete
the proof of Theorem 5.1.

Proof of Theorem 5.1. Taking the inner product of the first equation in (1.10) with �2 w+ and inte-
grating by parts, we find

1

2

d

dt

∥∥�w+∥∥2
2 + ∥∥∂x�w+∥∥2

2 = −
∫

�
(

w− · ∇w+) · �w+. (5.2)
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In order to make use of the anisotropic dissipation, we need to decompose the nonlinear term into
different parts that show explicit dependence on the horizontal and vertical derivatives. We write

∫
�

(
w− · ∇w+) · �w+ = J1 + J2 + J3,

where

J1 =
∫ (

�w− · ∇w+) · �w+, J2 = 2
∫ (

∂x w− · ∇∂x w+) · �w+,

J3 = 2
∫ (

∂y w− · ∇∂y w+) · �w+.

We further decompose J1 into four terms, J1 = J11 + J12 + J13 + J14, where

J11 =
∫ (

�w−
1 ∂x w+

1

)
�w+

1 , J12 =
∫ (

�w−
1 ∂x w+

2

)
�w+

2 ,

J13 =
∫ (

�w−
2 ∂y w+

1

)
�w+

1 , J14 =
∫ (

�w−
2 ∂y w+

2

)
�w+

2 .

It is clear that, after integration by parts and applying Hölder’s inequality,

| J11| � 1

16

(∥∥�∂x w+
1

∥∥2
2 + ∥∥�∂x w−

1

∥∥2
2

) + 4
∥∥w+

1

∥∥2
∞

(∥∥�w+
1

∥∥2
2 + ∥∥�w−

1

∥∥2
2

)
.

Similarly, after invoking ∂x w+
1 + ∂y w+

2 = 0,

| J14| � 1

16

(∥∥�∂x w+
2

∥∥2
2 + ∥∥�∂x w−

2

∥∥2
2

) + 4
∥∥w+

1

∥∥2
∞

(∥∥�w+
2

∥∥2
2 + ∥∥�w−

2

∥∥2
2

)
.

To bound J12, we apply Lemma 1.1 to obtain

| J12| � C
∥∥∂x w+

2

∥∥
2

∥∥�w−
1

∥∥ 1
2
2

∥∥�∂x w−
1

∥∥ 1
2
2

∥∥�w+
2

∥∥ 1
2
2

∥∥�∂y w+
2

∥∥ 1
2
2

= C
∥∥∂x w+

2

∥∥
2

∥∥�w−
1

∥∥ 1
2
2

∥∥�∂x w−
1

∥∥ 1
2
2

∥∥�w+
2

∥∥ 1
2
2

∥∥�∂x w+
1

∥∥ 1
2
2

� 1

16

(∥∥�∂x w+
1

∥∥2
2 + ∥∥�∂x w−

1

∥∥2
2

) + C
∥∥∂x w+

2

∥∥2
2

(∥∥�w+
2

∥∥2
2 + ∥∥�w−

1

∥∥2
2

)
.

To bound J13, we need the H1-bound from Proposition 5.2. By Lemma 1.1,

| J13| � C
∥∥�w+

1

∥∥
2

∥∥�w−
2

∥∥ 1
2
2

∥∥�∂y w−
2

∥∥ 1
2
2

∥∥∂y w+
1

∥∥ 1
2
2

∥∥∂x∂y w+
1

∥∥ 1
2
2

� C
∥∥�w+

1

∥∥
2

∥∥�w−
2

∥∥ 1
2
2

∥∥�∂x w−
1

∥∥ 1
2
2

∥∥∇w+
1

∥∥ 1
2
2

∥∥∇∂x w+
1

∥∥ 1
2
2

� 1

16

∥∥�∂x w−
1

∥∥2
2 + C

∥∥∇w+
1

∥∥
2

∥∥�w+
1

∥∥2
2 + C

∥∥∂x∇w+
1

∥∥2
2

∥∥�w−
2

∥∥2
2.

Collecting the estimates for J1, we have found that four terms
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| J1| � 1

4

(∥∥�∂x w+∥∥2
2 + ∥∥�∂x w−∥∥2

2

)
+ C

(∥∥w+
1

∥∥2
∞ + ∥∥∂x w+∥∥2

2 + ∥∥∇w+
1

∥∥
2 + ∥∥∂x∇w+

1

∥∥2
2

)(∥∥�w+∥∥2
2 + ∥∥�w−∥∥2

2

)
.

J2 and J3 can be estimated in a similar fashion and we omit further details. Similar estimates can be
obtained for �w− . Combining the estimates for all of them and applying Gronwall’s inequality then
yield the desired global result. This completes the proof of Theorem 5.1. �
6. Global regularity for a slightly regularized system

This section establishes that (1.3) possesses global regular solutions if the initial data are suffi-
ciently smooth. More precisely, we have the following theorem.

Theorem 6.1. Let ε > 0 and δ > 0 be real parameters. Consider (1.3) with an initial data (u0,b0) ∈ H2(R2).
Then the corresponding solution (u,b) obeys the following global a priori bounds, for any T > 0 and t � T ,

∥∥(u,b)
∥∥2

H2 +
t∫

0

(∥∥(∂xu, ∂xb)
∥∥2

H2 + ε
∥∥(

Λδu,Λδb
)∥∥2

H2

)
dτ � C,

where C is a constant depending on T and ‖(u0,b0)‖H2 only.

Proof. We show that (u,b) admits a global H2-bound. Clearly,

∥∥(u,b)(t)
∥∥2

2 + 2

t∫
0

(∥∥∂xu(τ )
∥∥2

2 + ∥∥∂xb(τ )
∥∥2

2

)
dτ

+ 2ε

t∫
0

(∥∥Λδu(τ )
∥∥2

2 + ∥∥Λδb(τ )
∥∥2

2

)
dτ = ∥∥(u0,b0)

∥∥2
2.

To obtain the global bound for the H1-norm, we take advantage of the vorticity formulation. Taking
the curl of (1.3), we find that ω = ∇ × u and j = ∇ × b satisfy

⎧⎪⎨
⎪⎩

∂tω + u · ∇ω + ε(−�)δω = b · ∇ j + ∂2
x ω,

∂t j + u · ∇ j + ε(−�)δ j = b · ∇ω + ∂2
x j

+ 2∂xb1(∂yu1 + ∂xu2) − 2∂xu1(∂yb1 + ∂xb2).

(6.1)

Taking the inner product of (6.1) with (ω, j) and integrating by parts, we obtain

1

2

d

dt

(‖ω‖2
2 + ‖ j‖2

2

) + ‖∂xω‖2
2 + ‖∂x j‖2

2 + ε
∥∥Λδω

∥∥2
2 + ε

∥∥Λδ j
∥∥2

2

= J1 + J2 + J3 + J4, (6.2)

where

J1 = 2
∫

∂xb1∂yu1 j dx dy, J2 = 2
∫

∂xb1∂xu2 j dx dy,

J3 = 2
∫

∂xu1∂yb1 j dx dy, J4 = 2
∫

∂xu1∂xb2 j dx dy.
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The terms above can be bounded as follows. Integrating by parts, we have

J1 = −2
∫

b1∂xyu1 j − 2
∫

b1∂yu1∂x j.

Choose q large enough such that qδ > 2. By Hölder’s inequality,

| J1| � 2‖b1‖q‖∂xyu1‖2‖ j‖ 2q
q−2

+ 2‖b1‖q‖∂x j‖2‖∂yu1‖ 2q
q−2

. (6.3)

By the boundedness of singular integral operators,

‖∂xyu1‖2 � C‖∂xω‖2, ‖∂yu1‖ 2q
q−2

� C‖ω‖ 2q
q−2

.

Applying the Sobolev inequality, for q > 2 and qδ > 2

‖ f ‖ 2q
q−2

� C‖ f ‖1− 2
qδ

2

∥∥Λδ f
∥∥ 2

qδ

2 ,

and Young’s inequality, we obtain

| J1| � 1

8
‖∂xω‖2

2 + ε

4

∥∥Λδ j
∥∥2

2 + C‖b1‖
2qδ

qδ−2
q ‖ j‖2

2

+ 1

8
‖∂x j‖2

2 + ε

4

∥∥Λδω
∥∥2

2 + C‖b1‖
2qδ

qδ−2
q ‖ω‖2

2.

J2 can be bounded through Lemma 1.1,

| J2| � C‖∂xb1‖2‖∂xu2‖
1
2
2 ‖∂xyu2‖

1
2
2 ‖ j‖

1
2
2 ‖∂x j‖

1
2
2

� 1

8
‖∂xω‖2

2 + 1

8
‖∂x j‖2

2 + C‖∂xb1‖2
2

(‖ω‖2
2 + ‖ j‖2

2

)
.

To bound J3, we first integrate by parts to obtain

J3 = −2
∫

u1∂xyb1 j − 2
∫

u1∂yb1∂x j.

The terms on the right can then be estimated in a similarly fashion as in (6.3) and the bound is

| J3| � 1

8
‖∂xω‖2

2 + 1

8
‖∂x j‖2

2 + ε

4

∥∥Λδ j
∥∥2

2 + C‖u1‖
2qδ

qδ−2
q ‖ j‖2

2.

J4 can be bounded in a similar fashion as J2 and

| J4| � 1

8
‖∂x j‖2

2 + C‖∂xu1‖2
2‖ j‖2

2.

Inserting the estimates for J1, J2, J3 and J4 in (6.2) yields the desired global H1-bound.
To establish the global H2-bound, we take the inner product of (6.1) with (�ω,� j) to obtain, after

integration by parts,
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1

2

d

dt

(‖∇ω‖2
2 + ‖∇ j‖2

2

) + ‖∇∂xω‖2
2 + ‖∇∂x j‖2

2 + ε
∥∥Λδ+1ω

∥∥2
2 + ε

∥∥Λδ+1 j
∥∥2

2

= L1 + L2 + L3 + L4 + L5, (6.4)

where

L1 = −
∫

∇ω · ∇u · ∇ω dx dy,

L2 = −
∫

∇ j · ∇u · ∇ j dx dy,

L3 =
∫

∇ω · (∇b + (∇b)t) · ∇ j dx dy,

L4 = 2
∫

∇[
∂xb1(∂xu2 + ∂yu1)

] · ∇ j dx dy,

L5 = −2
∫

∇[
∂xu1(∂xb2 + ∂yb1)

] · ∇ j dx dy.

To estimate L1, we write the integrand explicitly

L1 =
∫ (

∂xu1(∂xω)2 + (∂xu2 + ∂yu1)∂xω∂yω + ∂yu2(∂yω)2)dx dy.

Each one of them can be bounded by Lemma 1.1 and then by Young’s inequality. For example,

∫
∂xu1(∂xω)2 dx dy � C‖∂xu1‖2‖∂xω‖

1
2
2

∥∥∂2
x ω

∥∥ 1
2
2 ‖∂xω‖

1
2
2

∥∥∂2
xyω

∥∥ 1
2
2

� 1

32
‖∇∂xω‖2

2 + C‖ω‖2
2‖∇ω‖2

2.

Since the estimates for other terms are similar, we obtain

|L1| � 1

8
‖∇∂xω‖2

2 + C‖ω‖2
2‖∇ω‖2

2 + C‖∇ω‖2
2‖ω‖

2
3
2 ‖∂xω‖

2
3
2 .

Similarly, L2, L3, L4 and L5 are bounded by

|L2| � 1

8
‖∇∂x j‖2

2 + C
(‖ω‖2

2 + ‖ω‖
2
3
2 ‖∂xω‖

2
3
2

)‖∇ j‖2
2,

|L3| � 1

8
‖∇∂xω‖2

2 + 1

8
‖∇∂x j‖2

2

+ C‖ j‖2
2

(‖∇ω‖2
2 + ‖∇ j‖2

2

) + C‖∂x j‖2
2‖∇ j‖2

2,

|L4| � 1

8
‖∇∂xω‖2

2 + 1

8
‖∇∂x j‖2

2

+ C
(‖ j‖2

2 + ‖ω‖2
2 + ‖∂x j‖2

2 + ‖ω‖
2
3
2 ‖∂xω‖

2
3
2

)(‖∇ω‖2
2 + ‖∇ j‖2

2

)
,

|L5| � 1

8
‖∇∂xω‖2

2 + 1

8
‖∇∂x j‖2

2

+ C
(‖ j‖2

2 + ‖ω‖2
2 + ‖∂x j‖2

2 + ‖∂xω‖2
2

)(‖∇ω‖2
2 + ‖∇ j‖2

2

)
.
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Inserting these estimates in (6.4), applying Gronwall’s inequality and invoking the global H1-bound,
we obtained the desired global H2-bound for the solution. This concludes the proof of Theo-
rem 6.1. �
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