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ABSTRACT. This paper studies the global well-posedness of the initial-value problem
for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator £
that can be defined through both an integral kernel and a Fourier multiplier. When the

symbol of L is represented by L with a satisfying lim ¢ o0 a|(§||£a|) =0 for any o > 0,

a([€1)
we obtain the global well-posedness. A special consequence is the global well-posedness

when the dissipation is logarithmically supercritical.

1. INTRODUCTION

Attention here is focused on the initial-value problem (IVP) for the Boussinseq-
Navier-Stokes equations with dissipation given by a general integral operator,

ou~+u-Vu+ Lu=—Vp+ ey,
00 +u-Vo =0,

V-u=0,

u(z,0) = ug(x), 6(x,0)=0(x),

where u : R? — R? is a vector field denoting the velocity, 6 : R?> — R is a scalar function,
e, is the unit vector in the x5 direction, and L is a nonlocal dissipation operator defined

by
£t = pe [ IO I e = ypay 12)

and m: (0,00) — (0, 00) is a smooth, positive, non-increasing function, which obeys
(i) there exists C; > 0 such that
rm(r) < C4 for all r < 1;
(ii) there exists Cy > 0 such that
rim/(r)] < Com(r)  for all r > 0;
(iii) there exists 8 > 0 such that

(1.1)

rPm(r) is non-increasing.

This type of dissipation operator was introduced by Dabkowski, Kiselev, Silvestre and
Vicol when they study the well-posedness of slightly supercritical active scalar equations
[13]. As pointed out in [13], £ can be equivalently defined by a Fourier multiplier, namely

L&) = P(EDFE) (1.3)
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for P(|¢]) = m(é) when P(&) satisfies the following conditions:

(1) P satisfies the doubling condition: for any £ € R?

P2[¢]) < enP([¢])

with constant cp > 1;
(2) P satisfies the Hormander-Mikhlin condition (see [33]): for any ¢ € R?

€™ |0 P(EN] < e P(E])

for some constant cgy > 1, and for all multi-indices k € Z¢ with |k| < N, with N
only depending on cp;
(3) P has sub-quadratic growth at oo, i.e.

1
/0 (el éldle] < oo
(4) P satisfies

(=A)P([E]) = et P(E)IE]™
for all || sufficiently large.

Throughout the rest of this paper we assume that £ satisfies both (1.2) and (1.3) with
P(l¢)) = m(%) obeying the conditions stated above. Some examples of m(r) are given
below:

1
m(r) = — for r > 0 and « € (0, 1], which yields £ = A%;
/,ﬂa
1
m(r) rlog'(e + 1/7) orr>0,v>0;
1

pu— f
m(r) rloglog(e? +1/r) orr >0,

where A = v/—A denotes the Zygmund operator and corresponds to the Fourier symbol
€] (see, e.g. [33]).
We remark that (1.1) can be reformulated in terms of the vorticity w = V X u as

follows:

Ow +u - Vw + Lw = 0,,0,

00 +u-VO =0,

u=Vty, AY=uw,

w(z,0) = wo(z), 6(x,0) = b0)(x),

(1.4)

where V+ = (—0,,, 0,,) and ¢ denotes the stream function. Our main result is a global
well-posedness theorem for the IVP (1.1) or (1.4) when L is slightly supercritical. More
precisely, we have the following theorem.

Theorem 1.1. Consider the IVP (1.1) and assume that L satisfies (1.2) and (1.3)

with P(|§]) = m(%) obeying the aforementioned conditions. We further assume that

a(&) = a(|€]) = |&|/P(€]) is positive, non-decreasing and satisfies

lim M—O, Vo> 0. (1.5)

glsoo [E]7
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Let ¢ > 2 and let the initial data (ug,8y) be in the class
uo € H'(R?), wo € LY(R*) N B, (R?), 6, € L*(R%) N B2, (R?),

where wy = V X g 1s the initial vorticity. Then (1.1) has a unique global solution (u,0)
satisfying, for all t > 0,
we LPH', weLPLNLIBY,, 6eLFPL*NLEBY, NLIBY,.
Here ngl denotes an inhomogeneous Besov space, whose precise definition is given
in the appendix, and B, with a > 0 being a non-decreasing function is defined through
the norm

1flze = 127°a(2)|A; fll L lir < o0, (1.6)

where A; denotes the Fourier localization operator, defined in the appendix. A special
consequence of Theorem 1.1 is the global existence and uniqueness of classical solutions
of (1.1) with logarithmically supercritical dissipation,

=~ - €]
Zu(€) = PIEa(e) = —o

(© = PODE) = s s
Corollary 1.2. Consider the IVP (1.1) with L given by (1.7). Assume that (ug,6y) €
H*T(R?) x H*(R?) with s > 1. Then IVP (1.1) with L given by (1.7) has a unique
global solution (u,0) € L>([0,T]; H*™Y(R?) x H*(R?)) for any T > 0.

u(§) for any v > 0. (1.7)

We are mainly motivated by very recent progress on the global regularity issue con-
cerning the 2D Boussinesq equations with fractional Laplacian dissipation or with partial
dissipation (see, e.g., [1, 2, 5, 6, 8, 11, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30]).
The Boussinesq type equations model geophysical fluids and play a very important role
in the study of Raleigh-Bernard convection (see, e.g., [10, 16, 25, 31]). Mathematically
the 2D Boussinesq equations serve as a lower dimensional model of the 3D hydrody-
namics equations. In fact, the Boussinesq equations retain some key features of the 3D
Navier-Stokes and the Euler equations such as the vortex stretching mechanism. As
pointed out in [26], the inviscid Boussinesq equations can be identified with the 3D Eu-
ler equations for axisymmetric flows. In [20] Hmidi, Keraani and Rousset studied the
Boussinseq-Navier-Stokes system with critical dissipation, namely (1.1) with

Lu=Au or Lu(f)= [¢|u(€)

and obtained the global well-posedness. Our intention here has been to explore how far
one can go beyond the critical dissipation and still prove the global regularity. Theorem
1.1 obtains the global well-posedness when the critical dissipation is reduced by a factor
weaker than any algebraic power such as any power of a logarithm. This result is
compatible with a recent work of Chae and Wu [§8], in which they studied a generalized
Boussinesq-Navier-Stokes system with a velocity field logarithmically more singular than
the one determined by the vorticity through the 2D Biot-Savart law.

We now explain the main difficulty that one encounters in the study of the global
regularity of solutions to (1.1). One key step in proving the global regularity is to
establish suitable global a priori bounds for the solutions. Clearly, u is bounded a priori
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in L? and 0 in LY for any ¢ € [2,00] if they are initially so. To obtain global a priori
bounds for the Sobolev norms, we make use of the vorticity equation

Ow + u - Vw + Lw = 0,,0.

But due to the “vortex stretching” term 0,,6, a simple energy estimate will not lead
to a global bound for ||w|; 2 unless Lw is very dissipative. In the case of the critical
dissipation Lw = Aw, Hmidi, Kersaani and Rousset [20] were able to overcome this
difficulty by considering a new quantity w — A~'d,,0 to hide d,,60. Following their idea,
we consider the combined quantity

G=w-—R. with R,=L"10,,, (1.8)

which satisfies

0G+u-VG+ LG = [R4,u- V6. (1.9)
This equation can be obtained by taking the difference of the equations for w and for R,6.
Of course, the trade-off is now to deal with the commutator [R,, u-V]0. After obtaining
a general bound for this commutator, we are able to prove global a priori bounds for
|G||z2- By fully exploiting the lower bound for the dissipation and suitably controlling
the term associated with the commutator, we can further bound ||G||zq for ¢ € (2,4).
In order to show a global bound for ||G||r« and ||w||L« with ¢ > 4, the strategy is first to
bound the space-time norm of ||G||E; B, and consequently ||G|| 12 - Making use of the
relation (1.8) and bounding ||| L1 g0 in terms of [Vl 12 e algebraically, we establish

global bounds for ||w|[sgo. and for |16 which, in turn, are sufficient for the

L}
global bound ||w||z« for any ¢ > 2. These global bounds guarantee a global solution. To
show the uniqueness, we consider the difference of two solutions (u*, M) and (u®,6®)
and show that the difference must vanish by controlling the velocity difference in B

and the difference 6 — ¢ in B; “.

The rest of this paper is divided into six sections and one appendix. Section 2 provides
several estimates including lower bounds associated with the dissipative operator £ and

a commutator estimate. Section 3 proves a global bound for [|G||z2 and for [|w|| jo..-1-
2,2

2. PRELIMINARY ESTIMATES

This section provides several estimates to be used throughout the rest of the paper.
First we recall two bounds from [7] for ||A;v||z» and ||Syv|r» when v is related to w
through

v=RQuw,
where R denotes the standard Riesz transform and @) a very general Fourier multiplier
operator (See Condition 1.1 in [7, p.36]). Here A; denotes the Fourier localization
operator and S; denotes the identity approximation operator (see the appendix for their
definitions). Next we derive some pointwise and Lebesgue-normed estimates associated
with the dissipative operator £. In addition, a generalized Bernstein type inequality
involving L is also obtained. Finally we prove an estimate for the commutator [R,, u|F.

Lemma 2.1. Assume that v and w are related through
v=RQuw,
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where R denotes the standard Riesz transform and Q) a Fourier multiplier operator
satisfying Condition 1.1 in [7, p.36]. Then, for any integer j > 0 and N > 0,

OpQ(002N> ||SN(A}||LP, 1 <p< oo,
CQ(Co2?) [[Ajwllpe, 1< q< o0,

|Snv||e

<
1Al <

where C, is a constant depending on p only, Cy and C are pure constants.

Throughout the rest of this paper, £ denotes the operator defined by both (1.2) and
(1.3). In addition, we recall that

e
P(l)’

The first two lemmas provide lower bounds involving £. These bounds are useful when
we estimate the LP-norms of the solution. The idea of proving them is similar to [12].

a(l¢]) = Rq =L '0,,. (2.1)

Lemma 2.2. Let L be the operator defined by (1.2). Then, for p > 1,

[f(@)P2 f(2)(Lf(2) = %E(\flp)-

It
/ y,d m(le - yl)dy

)P — 1 f (@)~ f(x) f(y)

|z —y|¢

Proof. By (1.2),

and thus

f@Ps@esa = pv. [

m(|z —yl|)dy
By Young’s inequality,

H@P 1@ ) < P < P2 @) + 51w

Therefore,
[f(@)[P2f (@) Lf(x)
1 f@)P—(p—D|f(@)P—|fly)P
Ly, RO DU WP,
1
= —L(f1).
This completes the proof of Lemma 2.2. 0

Lemma 2.3. Let L be the operator defined by (1.2). Then, for p > 2,

Ji2renar=2 [leiass
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Proof. The p = 2 case is trivial. For p > 2, let § = § — 2. By Lemma 2.2,

/ FPRF(Lf)de = / FH

> 1152 es1%)
- 5/\£2<\f|2>

This completes the proof of Lemma 2.3.

O

The following lemma is a generalized version of the Bernstein type inequality associ-

ated with the operator L.

Lemma 2.4. Let j > 0 be an integer and p € [2,00). Let L be defined by (1.2) and

(1.3). Then, for any f € S(RY),

PO s <C [ 18,5120, £ L8, da,
R

where C' is a constant depending on p and d only.

(2.2)

Proof. The case when p = 2 simply follows from Plancherel’s theorem. Now we assume
p > 2. The proof modifies the corresponding ones in [9, 17]. Let N > 0 be an integer to

be specified later. Clearly,
IA(A; 12122 < ISNAUAF12)]]z2 + (1 = Sn)A(A; £12)|2 = L + L.
By the standard Bernstein inequality (see the appendix), for s > 0,
e S [N LI
Applying Lemma 3.2 of [9], we have, for s € (0, min(§ — 1,2)),
12 F12 g < O||Ajf||ig_,21||Ajf||B;ES < CPU A 117
Therefore,

I < C27Ns9i 09| A £]12,.
By Lemma 2.1,

I = |SNALTZLZ(|A; f15) 12 < C2Y (P(2Y)) 7% L3 (1A; f12)| 2.

Combining the estimates leads to

IA(A;FI15) |2 < C27 N2 A F(12, + C2Y(P2N)) 2|21 A £]2)] 2

By the generalized Bernstein inequality for A in [9],
2114 flIze < CHUAIA;FI2) 2.
Therefore,
. P _Nsai s P 1 1 P
(A fll7, < C27W XU A f|17, + C2V(P2Y) 72 1L7 (1A f12)] 2.
We now choose j < N < 7+ Ny with Ny independent of j such that

¢ 2~ (N=i)s <=

(2.3)
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(2.2) then follows from (2.3). This completes the proof of Lemma 2.4. O

To prove the estimates for the commutator [R,, u|F', we first state a fact given by the
following lemma.

Lemma 2.5. Consider two different cases: § € (0,1) and § = 1.
(1) Let 6 € (0,1) and q € [1,00]. If |z|°h € L, f € B} __ and g € L™, then

q7m

1h= (fg) = F(hx @)lze < Clllxl e 1155 Ngllze, (2.4)

where C' is a constant independent of f,g and h.
(2) Let 6 = 1. Let q € [1,00]. Let ry € [1,q] and o € [1,00] satisfying % + % =1
Then

1P (fg) = f(hx gl < Clllelhllor IV fllze llgllzra, (2.5)

Here égm denotes a homogeneous Besov space, as defined in the appendix. (2.4) is
taken from [8] while (2.5) was obtained in [20, p.426]. We also recall the definition of
the Besov type norm

[z = 127a)[A; fll Lol < o0, (2.6)

as defined in (1.6) or in (A.5) in the appendix. With these notation at our disposal, we
are ready to state and prove the commutator estimate.

Proposition 2.6. Let a and R, be defined as in (2.1). Assume
peE2,0), qge[l,x], 0<s<o.
Let [Ro, u|F = Ro(uF) — uR,EF be a standard commutator. Then
[RayulFllsgs < C (lull |17

oot a2 T [[ullz2 | F]l2),
0,9
where C' denotes a constant independent of a and R,.

Proof of Proposition 2.6. Let j > —1 be an integer. Using the notion of paraproducts,
we decompose A;[R,, u|F into three parts,

Aj[Ra,U]F = [1+[2+13,

where
L= ) Aj(Ra(Se—ru- AF) = Spyu- RaARF),
Ik—l<2
L = Y AjRa(Apu- St F) = Mg RoSir F),
Ik—l<2
I = Y Ajf(Ra(Apu- ApF) — AR, - AF).
E>j—1

When the operator R, acts on a function whose Fourier transform is supported on an
annulus, it can be represented as a convolution kernel. Since the Fourier transform of
Si_1u - ALF is supported on an annulus around the radius of 2%, we can write

hk * (Sk,lu : AkF> — Sk,1U . (hk * AkF),
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where hy, is given by the inverse Fourier transform of i& P~1(|¢]) ®4(¢), namely

() = (16 P (€D 84(6))  (2).

Here @5, (¢) € C(R2), ®y(€) is also supported on an annulus around the radius of 2
and is identically equal to 1 on the support of Sy_ju - AxF. Therefore, recalling (2.1),
we can write

i61P7 (€D Bu(e) = 1L B2 o).
Therefore,
hio(2) = 22 ho(252) + a¥(2),  ho(z) = (%é()(@)v.
By Lemma 2.5,

11| v

IA

Clllal il llSj-vull gy 125 F oo
< C27%a(?) |1Sjrull gy IAGF |z

Iy in LP can be estimated as follows.

1Ll < C27% a(2) 1S F |l Ajul g5 _
< C2%a(?) Y [|AnF|L~ 1Ajullgs

m<j—1
‘ ‘ . a®(2’
_ C27$JCL71(2]> Z 2(85)(Jm)a2((2m)) 2(575)ma2<2m) |‘AmF|’L°°‘|Aju|’f§2,oo’
m<j—1

The estimate of ||I3||r» is different. We need to distinguish between low frequency
and high frequency terms. For j = 0,1, the terms in I3 with £k = —1,0,1 have Fourier
transforms containing the origin in their support and the lower bound part of Bernstein’s
inequality does not apply. To deal with these low frequency terms, we take advantage of
the commutator structure and bound them by Lemma 2.5. The kernel h corresponding
to R, still satisfies, for any r; € (1,00),

[z Al < C.
Therefore, by Lemma 2.5 and Bernstein’s inequality, for j = 0,1 and k = —1,0,1,

HAJ(RG(Aku . AkF) — Aku . RaAkF)HLp O |||l’|h||LT1 HVAku”Lp ||AkF||LT2

<
< Cllulle [[1F]] 2
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where % + % = 1. For the high frequency terms, we do not need the commutator
structure. By Lemma 2.1 and Hoélder’s inequality,
sl = || D Aj(Ra(Au- AF))|| < Y Ca) || Akl | ApF ||
k>j—1 o k>j-1
<Ca(@) > 2% Agul| e [|ARF | 1
k>j—1

. . 27
<O D) fullyy 3 200 GO a2y A e
I3y = Zk;zj—l Apu - RaAkF admits the same bound. Therefore, by the definition of the
norm in (2.6),

[[Ra, u] F|

B < [Z 20 (27) | 1 I, +LZ 2quaq<2ﬂ'>|\12||7;p]
i>—1 ji>—1

q

: LZ 2505 (2) | nf + )|+ C s | P

i>_1

The first term on the right is clearly bounded by

1
q

= Cllullgs _ I1F]
D,

—5.a2-
B

CHUHB’;;,OO[ 21~ 024(20)[| A F 4

Due to s < 4§, (1.5) and a convolution inequality for series,

1
q

290D |LlI%, | < C lullg |17

—5. a2 -
B

Thanks to 0 < s, (1 5) and a convolution inequality for series,

lz 2%9a(27) || L || 1
~

This completes the proof of Proposition 2.6. 0

Q=

< Cllullg _ IF]

s—8,a2 -
Boo,q

3. GLOBAL a priori BOUND FOR [|w]| jo..-1
2,2

This section establishes a global a priori estimates for |G| 2 and consequently for
ol -
Proposition 3.1. Assume that the initial data (uo,6y) satisfies the conditions in The-
orem 1.1. Let (u,0) be the corresponding solution and let w = V x u be the vorticity.

Let
G =w—TR., Ro=L710,,. (3.1)
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Then, for any t > 0,
61+ [ IE5GIsdr < B
and consequently ’
o0+ < B,
where B(t) is integrable on any ﬁmte—timé interval [0, T).

Proof. Trivially v and 6 obey the following global a prior: bounds

16()[[z2nree < [00llr2nzee,  [Ju(t)|z2 < [luollz2 + t[|6o] 22 (3.2)
It is easy to check that GG satisfies
G +u-VG+ LG = [R4,u- V0. (3.3)

Taking the inner product with G leads to
5 dt||G||L2 + /GEde = /GV- (R, ulddx. (3.4)
By the Hoélder inequality and the boundedness of Riesz transforms on L2,

‘/GV~ (R, ulfdz| < ||L2G|| 12 |£72A[Ra, ulf]| 2.

Inserting this estimate in (3.4) and applying Young’s inequality, we obtain
d 1 _1
ZNGIL: +1£2G 2 < [1£72A[Ra, u]f]72. (3.5)

By the definition of the norm in (2.6), ||[L72Af|]s < || f|| . Applying Proposition 2.6

1 a
B2)2
2
with § > % and p = ¢ = 2, we obtain
R, ulbll 3.5 < Cllullsg MON 4502
2

002

2 + C lul|2 [|0]| 2.
Since u = VA~ lw,
HUHng = sup 2” [Ajullrz < [[A_qul|z2 +sup 2% HAJVLAAWHLQ
' j=-1 Jj=>0
< ullze +sup 297V Ajwl 2 < [lullzz + |l oot
70 22

For 6 > £, [|6]| Y < ||0|| 2. Therefore,

BT
£ 5 Ras 0l < [Ras 0l .5 < €l 10030 + ol g 1100 (36)

We can bound the HWHB‘;;;’I by
[l gt < 16 gt + IRabll s < G+ 6] (37)

Since ||u||p2 and ||6]|2nr~ are bounded by (3.2), we combine (3.5), (3.6) and (3.7) to
obtain the desired result. This completes the proof of Proposition 3.1. ([l
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4. GLOBAL a priori BOUND FOR |G|z« WITH ¢ € (2,4)
This section establishes a global a priori bounds for ||w||L« with ¢ € (2,4).

Proposition 4.1. Assume that the initial data (ug,6y) satisfies the conditions stated
in Theorem 1.1. Let (u,0) be the corresponding solution and G be defined as in (3.1).
Then, for any q € (2,4), G obeys the global bound, for any T >0 andt < T,

Gl +c [ [lekirn

where C' is a constant depending on q only and B(t) is integrable on any finite time
interval. A special consequence is that, for any small € > 0,

lw®) e, < B(1)- (4.2)

Proof. Multiplying (3.3) by G|G|77? and integrating with respect to =, we obtain

2 t
dxdt + C / IG||? ., dT < B(t), (4.1)
0 L I+e

é%neniq +/G|G|‘12£de _ —/G|G\‘12V  [Ra, )6 o
By Lemma 2.3,
/G|G|q‘2£Gda: > 0/|cé(|G|3)|2dx.
Set € > 0 to be small, say, for ¢ € (2,4),
(1+e) (1—3) < %
Thanks to the condition in (1.5) and by a Sobolev embedding,
ILEIGIDIE: = > 1AL5(1GIH)]%

jz-1
= Y Ya@)a(6)I3
j>-1
> 0 Y 2GRl
j>—1
= ClIA5 (G133

> ClG|" 4 -
L1+e

For g € (2,4), we choose s > 0 such that

> +(14¢€ (1 2y 1
s> €, S € .) "2 €.
By Holder’s inequality,
/G|G|q_2V'[RmU]9 < GG gl [Ra )| -

By Lemma 4.2 below,
IGIGI2. < CHGI" S, (1G]

LTFe

—2
Ferroa-2) = ¢ HGH;Q% (€] P
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In addition, due to the condition in (1.5),
IGI2 5= D" 279867 < Y Pa(@)]|AGlF2 < [1£3(G)f7
j>—1 j>—1
By Proposition 2.6, recalling s > € and © = VA" w,
[Ras Bl s < Cllullggsve 18l ey + C 2 16]12

< Clwll o1 19z +C lull 22 (16]] 2
2,2

Putting the estimates together, we obtain

1d 1 a
Sl e [Iekeh P d+ C Gl
L 1+e

< CIIGH" £2(G)]e (IlwllBo,; 16| Lo +CIIUI|L2||9||L2> :

Applying Young’s inequality to the right-hand side, noticing that ¢ € (2,4) and resorting
to the bounds in Proposition 3.1, we obtain (4.1). (4.2) follows from the inequality
lwll gy, < NGllgse, + Rabll5ys, < IGllza +116]] o

This completes the proof of Proposition 4.1. 0

We have used the following lemma in the proof of Proposition 4.1.

Lemma 4.2. Let g € (2,00), s € (0,1),0<e(¢—2) <2 and f € Lite n Her0-90+9),
Then

I1£172 /1

i = CHqu

< CHqu A,

m
Proof. This proof modifies that of [20]. Identifying H* with B§2 and by the definition

of Bj,, we have

o= a+e: (4.3)

/lllflq 2f@ty) = 117 f@)]12
e

|y|2+2s

A1 £11

Thanks to the inequality

A7 flz+y) = 11772 f@)] < O (If172 (@ +y) + 11772 (@) [f (@ +y) = fa)],
we have, by Holder’s inequality

111772 f(a +y) = | £172 f(2)]I72 <C||f|| ||f(x+y) F(@)[l7,
where
_ %
P2
Therefore,

2
IA12 £ < CUAPS NI,
Further applying the Besov embedding mequahty

B, <C ”f”ﬁsﬂ—%?
we obtain (4.3) and this completes the proof of Lemma 4.2. O
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5. GLOBAL a priori BOUND FOR ||G||ZTBS WITH ¢ € [2,4)

This section proves a global a priori bound for ||G||z, B, with ¢ € (2,4). This bound

serves as an important step towards a global bound for HwH e with general g € [2, 00).

Proposition 5.1. Assume that the initial data (ug,6y) satisfies the conditions stated in
Theorem 1.1. Let

€l,0], s€10,1), qe€(24).
Then, for any t > 0, G obeys the following global bound
G2y 5:, < B(), (5.1)
where B is integrable on any finite-time interval.
Proof. Let j > —1 be an integer. Applying A; to (3.3) yields
OA;G+ LAG=—-Aj(u-VG) —Aj[R,,u- V6.
Taking the inner product with A;G|A;G|972, we have

1d
CIAGIL + [ AGIAGILAG = i+ 5:2)

where

—/Aj(u VG) MGG, (5.3)

Jy = —/Aj[Ra,u V10 A;GIA;G|92.
According to Lemma 2.4, for j > 0, the dissipation part can be bounded below by
/ AGIAGI2LAG > CP2)|AG,. (5.4)
By Lemma 5.2 below, J; can be bounded by

. 2 N2
il < C2J(e+q>HMHB;&[HAjGHLqu Z 23| A G| e

m<j—2

+ 30 2O AG] 14,611 (5.5)

k>j—1
where we have taken € to be small positive number, especially
s—14+3e<0.

To bound .J5, we first apply Holder’s inequality and then employ similar estimates as in
the proof of Proposition 2.6 to obtain

Bl S [ Rau - V10l A,GE
< O (2 al@)wll e 10l + lullz2llBllz2 ) 14,615 (5.6)
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Inserting (5.4), (5.5) and (5.6) in (5.2) and writing the bound for ”W(t)HB;gO by B(t),
we obtain

d . . . ,
—1A,Gllzs +C2 a7 (2) | A;G [z < C27 a(2) B(?)

+CPCDBMIAGr+ Y 27| ARG e

m<j—2

+ Z oi—k)(1-2) HAkGHLq]-

k>j—1
Due to (1.5), a(27) < 29. Integrating in time yields
18,G(#)l|ze < e A;G(0) 10 + C 279075 B(1)

t .
+C Y AFDB() / e C2 TV (1) dr,
0

where, for notational convenience, we have written

L(t) = |18;Gls + Y 2" aALG| e + > 29U ALG 1 |-

m<j—2 k>j—1

Taking the L" norm in time and applying Young’s inequality for convolution lead to
18,Gllzze < €274 | A,G(0) 1 + C 2790 Br)
+CPCED B L
Multiplying by 27¢, summing over j > —1 and noticing s — 1 + 3¢ < 0, we obtain

1Glz;5:, < ClGO)pe-rrra-o + CB(t) + K1+ Ky + K, (5.7)
where

Ki=C Y 2020 B(1) 27| A Gy o,
Jj=—1

Ky =C Z 2j(—1+2e+§)§<t) 9Js Z 2(m_j)%HAmGHL;Lq,
i>-1 m<j—2

Ky =C 3 YT 2 30 2 A .
j>—1 k>j—1

Since —1 + 2¢ + % < 0, we can choose an integer N > 0 such that

CQN(*I‘FZE‘F%)E({;) < %
The sums in Ky, K3 and K3 can then be split into two parts: j < N and j > N. Since
|G|z« is bounded, the sum for the first part is bounded by C B(t)2*". The second part

of the sum over j > N is bounded by /|G| 7, - .- Therefore,
t™q,

~ 3
Ky, Ky, Ky < C B2 + |Gz,

Combining these bounds with (5.7) yields the desired estimates. This completes the
proof of Proposition 5.1. O



THE NAVIER-STOKES-BOUSSINESQ EQUATIONS 15

We now provide the details leading to (5.5). They bear some similarities as those in
[8], but they are provided here for the sake of completeness.

Lemma 5.2. Let J; be defined as in (5.8). Then we have the following bound
(g 2 )2
| Jille < ¢ 2I(etg) ||w|‘é(;§o |:”AjG||Lq + Z 2l J)qHAmG”Lq

m<j—2
+ >0 20D G 14,618
k>j—1
Proof. Using the notion of paraproducts, we write
Aj(u-VG) = Jiu + Jig + Jiz + Jig + Jis,
where
JH = Z [Aj, Sk,lu . V]AkG,
li—k|<2
J12 = Z (Sk,lu - S]u) . VA]AkG,
li—k|<2
J13 = Sju : VAJ‘G,
J14 = Z A](Aku . VSk_lG),
li—k|<2
J15 = Z Aj(Aku . vsz)
k>j—1
Since V - u = 0, we have
/Jlg‘AjG’q_QAde.ﬁE =0.
By Holder’s inequality,

‘/J11|AjG|q_2AjG < || Jullpa )| A; Gl

We write the commutator in terms of the integral,

Ji = /ij(x — ) (Sk—1u(y) — Sk—1u(z)) - VALG(y) dy,

where @; is the kernel of the operator A; and more details can be found in the Appendix.
As in the proof of Lemma 3.3, we have, for any 0 <€ < 1,

[ ullze < "= (@) [l [1Sj-1ull ge [VA;G s
By the definition of ®; and Bernstein’s inequality (see the Appendix), we have
j(e+2 —€
[ialle < CPD o= To(@)[| 1 (19510 e, 145 Gl os
|A;G| La-

< CPDw

Again, by Bernstein’s inequality,
[Ji2llze < CllAjullLa[VA;G|
(ex?
< O ||| ge 185G 1o




16 D. KC, D. REGMI, L. TAO AND J. WU

[Juallee < ClAjullLa]|VS; 1 G| oo
CY D wllge D 2 ARG s

m<j—2

IN

(et 2 E)(1-2 e
| Al < €2 37 20700 AT Al 1| AkG ) 1

k>j—1

; 2 i _2
< YN wllg, D0 2O A

k>j—1

Combining the estimates above yields

‘62 m_»g
| JillLe < Cy«qum%&NAﬂmm+-§:2< e || ApnG| 1o

m<j—2
+ 30 20O | AG ] 185Gl
k>j—1
This completes the proof of Lemma 5.2. 0

6. GLOBAL a priori BOUNDS FOR ]|<J.;||L%Bo,a1 AND ||wl||rs FOR ANY ¢ > 2

This section shows that, if the initial data wg is in L%, then the solution w is also
a priort in LY at any time. This is established by first proving the time integrability
|wl| 11p0e - More precisely, we have the following theorem.

Proposition 6.1. Assume that the initial data (ug, 6y) satisfies the conditions as stated
in Theorem 1.1. Then we have the following global a priori bounds. For any T > 0 and
t<T,

@Iy poe, < CT), 10| yoz < C(T), lw®)[za < C(T),

I o
Boo,l

where C(T) are constants depending on T and the initial norms only.

In order to prove this proposition, we need the following fact.

Lemma 6.2. Let T' > 0 and let u be a divergence-free smooth vector field satisfying

T
/ |IVul e dt < oo.
0

Assume that 0 solves
00 +u-Vo=f.

Let a : (0,00) — (0,00) be an nondecreasing and radially symmetric function satisfying
(1.5). Let p € [1,00]. For anyt > 0,

t
1Bz < (Wl + 1 Nigse) (14 [ 17l

This lemma can be proven in a similar fashion as that of Lemma 4.5 in [8]. A crucial
assumption is that a satisfies (1.5).
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Proof of Proposition 6.1. We first explains that (5.1) in Proposition 5.1 implies that, for
t<T,

1G]l Lo, < C(T).

In fact, if we choose s € [0, 1) satisfying s > % for ¢ € (2,4) and set € > 0 satisfying
e+§—s<0, then

Gl = 3 a@)AGl~ < 3 a(2)2% |2, s

j>—1 Jj=-1
< Z a(2j)2—ej 2j(e+§—8)2jsHAjGHLq < C|G] B2
Jj=—1

where we have used the fact that a(27)27% < C for C independent of j. Furthermore,

||w||L%Bgsl S HGHL%B?.S,H + ||Ra9||L%Bgcfl'

By the definition of the norm in ngl and recalling that R0 is defined by the multiplier

a(|§|)%, we have

IRl poe, = aZ) 1A RAIz= + D a(2) [|ARa|~

=0
< Clolliz + 3 a(2) 146
=0
< Cllollez + 18] oo
oo,1
By Lemma 6.2,
t
Blgee < Clul g (14 [ I1Vulliat)
< Clfol e (1+ Mullzzas + Ieollze,, )
< Cloll gour (1+ lllzgze + Il o, ) - (6.1)

Therefore,

ollgsts, < IGHuzane, +C (ollo + ol )
t t
+O 0l [ alzpzs i+ C 1ol g [ ol s, .

By Gronwall’s inequality, ||W||L%Bo,a1 < C(T), which, in turn, implies that, by (6.1),

16()] .2 < C(T).
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Now we prove the bound for ||w||ze. From the equations of G and R0,
lwllze < N1Gllze + [[Rab| o

t
< HG0||Lq+HRa90HLq+2/ 1Rt - V10| 10 dr
0

IN

t
[Goll + [ Raboll +2 | [Ravie- V6l
0 ,

Following the steps as in the proof of Proposition 2.6, we can show that
(R, V)ellss, < Cllollza [6ll o, + C 160] 1l o

Gronwall’s inequality and the bound ||| 1 go.. < C(T') then imply the bound for [|w]|La.
This completes the proof of Proposition 6.1. (l

7. UNIQUENESS AND PROOF OF THEOREM 1.1

This section proves the uniqueness of solutions in the class stated in Theorem 1.1 and
sketches the proof of Theorem 1.1. First we state and prove the uniqueness theorem.

Theorem 7.1. Assume that the initial data (ug,8y) satisfies the conditions stated in
Theorem 1.1. Then, the solutions (u, ) in the class
we ([0, T} HY), we L=(0, T L) N LyBly, 0 € L2(0,T], LN By) (T.1)

must be unique.

Proof. Assume that (uV, 1)) and (u®,6®) are two solutions in the class (7.1). Let
p1) and p® be the associated pressure. The differences

u=u? — W, p=p® —p) 9= 0® _p)
satisfy

O+ uV - Vu+u - Vu® + Lu = —Vp + ey,
00 +uM -V +u- Ve =0.

By Lemmas 7.2 and 7.3 below, we have the following estimates
||U(t)||Bgvoo < ||U(O)||Bgyoo + C||9||L§°B;;“
t
e / la(m)llzz (fa®llzz + o Dls, + la® e+ lw® g, ) dr
and

t
10(t) 10 < 1000) 10+ C / 10 e (e 22 + O ) dir

t
O [l 162 e,
0 ,

In addition, we bound ||u||z2 by the following interpolation inequality

lull iz < Cllull g _ log (1 o Nl )

||u||Bg,oo
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together with ||ul gz < |[u™ ||z +||u® || g1. These inequalities allow us to conclude that
Y(t) = [lu®)lsg,, +1100)] ;10

obeys
Y(t)<2Y(0)+ C /t Dy(T)Y (1) log (1 + Do(7)/Y (7)) dr, (7.2)
where 0
Dy = 6P, + a2 + wPllg, + [0 lze + [w]a0.,.
Dy = [l + [u®[a.

Applying Osgood’s inequality to (7.2) and noticing that Y (0) = 0, we conclude that
Y (t) = 0. This completes the proof of Theorem 7.1. O
We now state and prove two estimates used in the proof of Theorem 7.1.

Lemma 7.2. Assume that ™, u®, u, p and 0 are defined as in the proof of Theorem
7.1 and satisfy
du+uV - Vu+u-Vu® + Lu = —Vp+ fe,. (7.3)

Then we have the a priori bound

lu®)llsg.. < Iu(O)llzg. + C 18]l 0, 1
t
e / ()l (12 + oWz, + 1u@ e + 0@ s, ) dr- (7T4)

Proof of Lemma 7.2. Let j > —1 be an integer. Applying A; to (7.3) and taking the
inner product with Aju, we obtain, after integration by parts,

1d
5 gl AsullEs + 1£2Aullfe = Ji 4 Jo + Ja, (7.5)
where
J = —/AjuAj(u(l)-Vu) dz,
Jy = —/AjuAj(u-Vu(2))dx,

J3 = /Aju Aj(Oer) du.
By Plancherel’s theorem,
I£28ull3: > C2a™ (27) | AzullZ.
where C' = 0 in the case of j = —1 and C' > 0 for 7 > 0. The estimate for J3 is easy and
we have, by Holder’s inequality,
s < 1Azull2 1A;0]l2 < 2™ (27) | Ajul] g2 [16]] g0

To estimate .J;, we need to use a commutator structure to shift one derivative to u().
For this purpose, we write

A]’(u(l) ) VU) = Ju + Jio + Jis + Jia + Ji5, (7.6)
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where
Jll = Z [Aj,Sk_lu(l) : V]Aku,
li—kl<2
Jlg = Z (Sk_lu(l) - Sju(l)) . VAjAku,
li—k|<2
J13 = Sju(l) : VA]'U,
J14 = Z A](Aku(l) . VSk_lu),
li—k[<2
J15 = Z Aj(Aku(l) . Vﬁku)
k>j—1
Since V - u) = 0, we have

/J13 Aju dxr = 0.

Ji1, Ji2, J14 and Ji5 can be bounded in a similar fashion as in the proof of Lemma 5.2
and we have

I allzz [[J2llze < € (@)l + [l 1o A ull 2,
1 rallzz < C (JuM Iz + lwMllp, ) D 2" | Al 2,

m<j—1
I hsllze < C (luVz2 + l0Dllpe ) > 277 Aull e
E>j—1
To estimate Jo, we write
Aj(u- Vul®) = Joy + Jog + Jos, (7.7)

where

J21 = Z Aj(Sk_lu : VAku(Z)),

li—k|<2

J22 = Z A](Aku . VSk,lu(Q)),
li—k|<2

Tz = > Aj(Agu- VAw®).
k>j—1

Therefore, by Holder’s inequality,
a1 llze < C flulle [VA;u? 1=,
12l 2 < ClIAull 2 ([0l 22 + lo® |52, ,),

I asllze < C ([u® ]2 + 0@ lm ) > 2] Al o

k>j—1
Inserting the estimates above in (7.5), we obtain
1d , , : .
§E||Aju||]:2 +C2a 1 (2) || Ajul| 2 < C2a1(27) HHHBQ;G + K(t), (7.8)



THE NAVIER-STOKES-BOUSSINESQ EQUATIONS 21

where
K@) = C([uz+ loW s, + u® e + w50, A ulle
+C Jull 2 [VA7u | oo + ([uMlz2 + lwMlge ) Y 2" | Al 12
m<j—1

+C (lulze + lwMlpe, + 1Pz + 0P s ) D 27| Agul| 2.
k>j—1

Integrating (7.8) in time and taking sup,-_;, we obtain (7.4). This completes the proof
of Lemma 7.2. U

Lemma 7.3. Assume that 6, u™"), v and 6% are defined as in the proof of Theorem 7.1
and satisfy

9,0 +uM -V +u-Ve® =0, (7.9)

Then we have the a priori bound
¢
165,20 < 100020 + C / 16 e (P22 + 0Dl o, ) dr
, , 0 ,
t
+C / ||u(7')||L2||9(2)HBo,a dr. (7.10)
0 0,1

Proof of Lemma 7.3. Let j > —1 be an integer. Applying A; to (7.9) and taking the
inner product with A;6f, we obtain

1d
57 185002 = K1+ K>, (7.11)
where
K, = —/AjQAj(u(l)-VH)dx,
Ky, = —/AjeAj(u~V9(2))dx.

To estimate K, we decompose A;(ull) - V6) as in (7.6) and estimate each component
in a similar fashion to obtain

Kl < ClABIZ: (e + ol )
+C 180022 2a™(27) [10]] g 20 (a2 + ™ 1o, )-

To estimate K5, we decompose Aj(u-V0?) as in (7.7) and bound the components in a
similar fashion to have

Kol < C 1A e lullz227a” (27) 0] o
Combining these estimates, we find
d S
180l < C2a @) 10 51 (@22 + lw™ 150, )
+C lull 220 (20) 09 oo
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Integrating in time, multiplying by 277a(2’) and taking sup,~_,, we obtain (7.10). This
completes the proof of Lemma 7.3. U

We now sketch the proof of Theorem 1.1.

Proof of Theorem 1.1. Thanks to Theorem 7.1, it suffices to establish the existence of
solutions. The first step is to obtain a local (in time) solution and then extend it into
a global solution through the global a prior: bounds obtained in the previous section.
The local solution can be constructed through the method of successive approximation.
That is, we consider a successive approximation sequence {(w™,6™)} solving

w = Sowg, 0D = 5,8,
Dot () L D) 4 L) = g, gintD)
w(”+1)($, O) = Sn+2wﬂ('r)a 9(n+1)<x7 0) = Sn'f‘?eo('r)'

(7.12)

To show that {(w™,0™)} converges to a solution of (1.4), it suffices to prove that
{(w™,6™)} obeys the following properties:
(1) There exists a time interval [0, 7] over which {(w™, #()} are bounded uniformly
in terms of n. More precisely, we show that
g, < O 10N e g < OCTL,
where C(T7) is a constant independent of n.
(2) There exists T5 > 0 such that w™ ™ — (™ is a Cauchy sequence in LB} and

g(+1) — 9() is Cauchy in L} B'}*, namely

co,1

D) — W(n)”LgoB;{l < C(Ty) 27", ||o" ) — 9(”)||L%B;%ia <C(y)2™"

for any t € [0, T3], where C(T3) is independent of n.
If the properties stated in (1) and (2) hold, then there exists (w, 0) satisfying

we L®(LPNLY)NLIBY

00,19

6 € L*(L* N BYX,) N LI B%"

00,17
w™ —w in LB, 0™ =0 in LB

for any ¢ < min{7},75}. It is then easy to show that (w,#) solves (1.4) and we thus
obtain a local solution and the global bounds in the previous sections allow us to extend
it into a global solution. It then remains to verify the properties stated in (1) and (2).
Property (1) can be shown as in the previous sections (Section 3 through Section 6)
while Property (2) can be checked as in the proof of Theorem 7.1. We thus omit further
details. This completes the proof of Theorem 1.1. O

APPENDIX A. FUNCTIONAL SPACES AND OSGOOD INEQUALITY

This appendix provides the definitions of some of the functional spaces and related
facts used in the previous sections. In addition, the Osgood inequality used in the
proof of Theorem 7.1 is also provided here for the convenience of readers. Materials
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presented in this appendix can be found in several books and many papers (see, e.g.,
(3, 4, 28, 32, 34]).

We start with several notation. S denotes the usual Schwarz class and S’ its dual,
the space of tempered distributions. Sy denotes a subspace of S defined by

SOZ{QbES: Qﬁ(l')x'ydx:(L|’y|:071’2’...}
Rd

and S denotes its dual. S can be identified as
Sy=8/Sy =8P
where P denotes the space of multinomials.
To introduce the Littlewood-Paley decomposition, we write for each j € Z
Aj={¢eR: V< gl <2} (A1)

The Littlewood-Paley decomposition asserts the existence of a sequence of functions
{®,};ez € S such that

suppEI\Dj C Aj, §](§) = ZI\DO(Q_JE) or ®;(z) = 2/9y(27x),
and
— = . [ 1, ifeeR\ {0},
P ‘I’J‘(@—{ 0 . ifé=o.
j=—00
Therefore, for a general function ¢ € S, we have

o0

ST 006 = () for € € RT\ {0}

j=—00

In addition, if ¢ € &y, then
3" B;(€)i(6) =9(€) for any £ € RY

That is, for ¢ € Sy,

and hence

N oixf=f  feS]

j=—o0

in the sense of weak-* topology of §). For notational convenience, we define
Af=®;xf  jel (A.2)

Definition A.1. For s € R and 1 < p,q < 00, the homogeneous Besov space é;a
consists of f € & satisfying

/]

By, = 1275)| A £l 1o ||a < 0.
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We now choose ¥ € S such that
V(E) =1-) &;(¢), {eR”
=0
Then, for any ¢ € S,

U+ > @jxep =1
j=0

and hence
Usf4+> Oxf=f (A.3)
=0
in &’ for any f € §’. To define the inhomogeneous Besov space, we set
0, if j < -2,
Aif=3 Uxf, if j =—1, (A.4)

O, xf, ifj=0,1,2,--.

Definition A.2. The inhomogeneous Besov space B,
consists of functions f € S satisfying

/]

qwithlgp,qgooandse]R

By, = ||2js||Ajf||Lp||lq < 0.

The Besov spaces é;,q and B,  with s € (0,1) and 1 < p, ¢ < 0o can be equivalently
defined by the norms

([ (et~ f@)lw) )
1] Bia (/Rd |£|d+sa dt) ;

_ (If (e +8) = f@)) )"
1135, = 1 lle + ( / d e dt) |

When ¢ = oo, the expressions are interpreted in the normal way. We have also used the
following generalized version of Besov spaces.

Definition A.3. Let a(z) = a(|z|) : (0,00) — (0,00) be a non-decreasing function
satisfying (1.5), namely

a()

|z|—o0 |£C’G

=0, Vo>0.

For s € R and 1 < p,q < oo, the generalized Besov spaces é;;g and Byyg are defined
through the morms

£l 5z = 127°a(27) 1A fllzollis < o0,

I.f]

sz = 127°a(2) 14 fll e lliw < oo (A.5)

We have also used the space-time spaces defined below.
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Definition A.4. Fort >0, s € R and 1 < p,q,r < oo, the space-time spaces Z;é;q
and EIB;,Q are defined through the norms

iz = 12714 fllgoolln
1 s, = 120, Flligaollo
Z;ésﬁa and ZIB;:Z are stmilarly defined.

p,q
These spaces are related to the classical space-time spaces L;"B%;,q, LiB;7, L;;é;;g and
Li By via the Minkowski inequality.

Many frequently used function spaces are special cases of Besov spaces. The following
proposition lists some useful equivalence and embedding relations.

Proposition A.5. For any s € R,

0

’ °0 .
In particular, quin{qg} — L9 — qumax{qg}.

For notational convenience, we write A; for AJ There will be no confusion if we keep
in mind that A;’s associated with the homogeneous Besov spaces is defined in (A.2) while
those associated with the inhomogeneous Besov spaces are defined in (A.4). Besides the
Fourier localization operators A;, the partial sum S; is also a useful notation. For an

integer 7,
j—1
Sj = Z Ak,
k=—1
where Ay is given by (A.4). For any f € &', the Fourier transform of S; f is supported
on the ball of radius 2/.

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions and
these inequalities trade integrability for derivatives. The following proposition provides
Bernstein type inequalities for fractional derivatives.

Proposition A.6. Let a« > 0. Let 1 <p < q < 0.
1) If f satisfies
supp f C {€ € R : |¢] < K27},
for some integer j and a constant K > 0, then
i 1_1
(=) £l pagey < C1 297D £l Lo gay-
2) If f satisfies
supp f C{€ € R K20 < |¢| < Kp2')
for some integer j and constants 0 < Ky < Ko, then

A citid(l_1
Ch QQOUHJCHLQ(Rd) < ||(_A)af||Lq(le) <y 2 It q)Hf“L”(Rd)’
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where C7 and Cy are constants depending on o, p and q only.

Finally we recall the Osgood inequality.
Proposition A.7. Let a(t) > 0 be a locally integrable function. Assume w(t) > 0

satisfies
>~ 1
/ ——dr = o0.
o w(r)

t

pt) < at / a(s)w(p(s))ds

0
for some constant a > 0. Then if a =0, then p =0; if a > 0, then
t

—Q(p(t)) + Qa) < / a(r)dr,

Suppose that p(t) > 0 satisfies

to
where )
d
Qx) = / _
s w(r)
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