* Crystal Field Theory

- the colors and magnetic properties of metal complexes are related to the d-orbitals they possess
- <u>crystal field theory</u> attempts to explain these phenomena thru electrostatic interactions
- octahedral complexes

- -- recall what an octahedral looks like and the shapes of the d-orbitals
- -- we know the bond between the metal center and a ligand occurs thru the donation of a lone pair (lp) of the ligand donor atom to the central metal
- -- if we think of this lp approaching the d-orbitals along the corner points of the octahedral there will be more repulsion btwn the lp and the d-orbital that is pointing toward one of these corners
- -- the 5 d-orbitals no longer have the same energy the d_x2-y2 and d_z2 orbitals are higher in energy than the d_xy, d_xz, and d_yz due to the increased repulsive energy

-- the difference in energy btwn the two sets of orbitals is the <u>crystal field</u> splitting energy, $\Delta_0 = hc/\lambda$ where $h = 6.63 \times 10^{-34}$ Js and

 $c = 3.00 \times 10^8 \text{ m/s}$

- back to color e.g. $[Ti(H_2O)_5]^{3+}$ (500 nm)
 - -- $\Delta E = \Delta_0$ therefore the absorption energy is the amount of energy needed to overcome the crystal field so to speak

$$E \left[\begin{array}{cccc} & \overline{z^2} & \overline{x^2 - y^2} & \uparrow \\ & \uparrow & & \downarrow \\ & \underline{\uparrow} & xy & \overline{xz} & \overline{yz} \end{array} \right] \xrightarrow{hv} & \overline{z^2} & \overline{z^2 - y^2} & \uparrow \\ & \frac{1}{\text{light absorption}} & & \downarrow \\ & xy & \overline{xz} & \overline{yz} \end{array} \right]$$

-- this is the relationship btwn CFT and the complex color

- high spin vs. low spin

- -- recall that when we ionize a transition metal the first e-'s to go are the 4s not the 3d
- -- we call the metallic ion a d^n e.g. Fe^{3+} is a d^5 because it has 5 e-'s in the

d-orbitals

- -- depending on the magnitude of Δ_0 and the number of d e-'s, the metal center is refer to as low spin or high spin
- -- when Δ_0 is large, the d_x²-y² & d_z² are much higher in E than the other three then the system is low spin
 - --- e-'s pair in the lower orbitals before jumping to higher ones
 - --- another consideration is pairing energy, PE (amount of energy needed to pair two electrons spin-up/spin down in a single atomic orbital) -> if $PE < \Delta_0$ the system is low spin
- -- when Δ_0 is small, d_x^2 -y² & d_z^2 are comparable in E and so the e-'s will go to these slightly higher orbitals before pairing up this is high spin
 - --- in this case $PE > \Delta_0$ it take more energy to pair than to promote
- -- Some metals may be both high-spin/low-spin, here are the 1st row TMs:
 - Sc⁺² (d¹), Ti⁺² (d²), V⁺² (d³) don't have enough e-'s to make a difference btwn high-spin/low-spin
 - Cr⁺² (d⁴), Mn⁺² (d⁵), Fe⁺² (d⁶), Co⁺² (d⁷) may be either high-spin/low-spin Ni⁺² (d⁸), Cu⁺² (d⁹), Zn⁺² (d¹⁰) have too many e-'s to make a difference btwn high-spin/low-spin

- high field vs weak field

- -- depending on the identity of the ligand attached to the metal center Δ_0 will be large or small
- -- weak-field ligands: produce small electrostatic repulsion btwn the lp and the dorbitals
 - --- this leads to Δ_0 which is small
 - --- when Δ_0 is small the PE is higher and therefore the system will more likely be high spin in nature
 - --- examples of weak-field ligands: halides (I⁻, Br⁻, Cl⁻)
- -- strong-field ligands: produce large electrostatic repulsion btwn the lp and the dorbitals
 - --- this lead to a large Δ_0
 - --- therefore the PE $< \Delta_0$ and the system will be low spin
 - --- examples: ethylenediamine (en) and cyanide (CN⁻)
- -- spectrochemical series ranks the ligands in order of the Δ_0

 $\begin{array}{l} (\text{weak field}) \ I^{-} < Br^{-} < S^{-} < \underline{S}CN^{-} < Cl^{-} < NO_{3}^{-} < F^{-} < OH^{-} < C_{2}O_{4}^{2^{-}} < H_{2}O < \underline{N}CS^{-} < CH_{3}CN < NH_{3} < en < bipy < phen < \underline{N}O^{2^{-}} < PPh3 < CN^{-} < CO \ (\text{strong-field}) \end{array}$

$$E \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \frac{\uparrow}{z^2} & \frac{\uparrow}{x^2 - y^2} & \uparrow & \uparrow \\ \frac{\uparrow}{xy} & \frac{\uparrow\downarrow}{xz} & \frac{\uparrow\downarrow}{yz} & \uparrow & \uparrow & \uparrow \\ [Ni(H_2O)_6]^{2+} (green) & [Ni(NH_3)_6]^{2+} (blue) & \frac{\uparrow\downarrow}{[Ni(en)_3]^{2+}} (violet) \end{bmatrix}$$

-- Ex: Which of the following has the shortest wavelength?

 $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$, $[\text{Ti}(\text{en})_6]^{3+}$, $[\text{Ti}\text{Cl}_6]^{3+}$

We start by looking at the spectrochemical series and ranking them by increasing field: $[TiCl_6]^{3+} < [Ti(H_2O)_6]^{3+} < [Ti(en)_6]^{3+}$

the stronger the field the larger the Δ_0 and therefore the shorter the λ

Therefore, $[Ti(en)_6]^{3+}$ must have the shortest λ - tetrahedral and square planar complexes

* Back to Electronic Spectra

- the color a solution containing one of these complex ions has is the complementary color of the absorbing photon
- the transition which occurs upon this absorption is between MOs which are primarily d in character which is why we refer to them as d-d
- the symmetry of wavefunctions for S, P, D, F, etc have the same symmetry as their atomic orbital counterparts s, p, d, f, etc
 - -- the splitting of these terms in the presence of an octahedral field is similar to the splitting that occurs for their AO counterparts
 - -- overall degeneracy is also conserved the number of microstates will remain constant
- Splitting of the dⁿ terms in an octahedral field
 - -- you may recognize these terms from the Character table of O_h

Microstates

$S \to A_{1g}$	1
$P \rightarrow T_{1g}$	3
$D \rightarrow E_g + T_{2g}$	2 + 3
$F \to A_{2g} + T_{1g} + T_{2g}$	1 + 3 + 3
$G \rightarrow A_{1g} + E_g + T_{1g} + T_{2g}$	1 + 2 + 3 + 3
$\mathbf{H} \longrightarrow E_g + T_{1g} + T_{1g} + T_{2g}$	2 + 3 + 3 + 3
$I \to A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g}$	1 + 1 + 2 + 3 + 3 + 3
$\frac{1}{2}$	$AC = (0, f_{1}, h_{1}, h_{2}, h_{3})$

- spin selection rule: $\Delta S = 0$ allowed $\Delta S \neq 0$ forbidden
- Tanabe-Sugano Diagrams
 - -- represent the energies of the different microstates and their dependence on the field strength generated by the ligands
 - -- using these diagrams we can predict how many peaks we would expect to see in our UV-vis spectrum as well as where they are located
 - -- the abscissa is always the ground state
 - -- Example d⁶ T-S Diagram Co³⁺

--- x-axis crystal field splitting term (CFSE), y-axis transition energy

- -- for the high spin case, CFSE ≤ 20 , i.e. $[CoF_6]^{3-}$ the only allowable transition is ${}^5T_{2g} \rightarrow {}^5E_g$ so we would expect to see one absorption peak in the spectrum
- -- for the low spin case, $CFSE \ge 20$, i.e. $[Co(en)_3]^{3+}$

we have two allowable transitions so we should see two peaks

$${}^{1}A_{1g} \rightarrow {}^{1}T_{1g} \qquad {}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$$

-- it turns out this does in fact work pretty well at predicting spectra