Summary of the formal rules of algebra on the set of real numbers

1. The axioms of "equality"

a = a	Reflexive or Identity
If $a = b$, then $b = a$.	Symmetry
If $a = b$ and $b = c$, then $a = c$.	Transitivity

These are the "rules" that govern the use of the = sign.

2. The commutative rules of addition and multiplication

$$a + b = b + a$$

 $a \cdot b = b \cdot a$

3. The associative rules of addition and multiplication

$$(a + b) + c = a + (b + c)$$

 $(a \times b) \times c = a \times (b \times c)$

4. The identity elements of addition and multiplication:

$$a + 0 = 0 + a = a$$
$$a \cdot 1 = 1 \cdot a = a$$

0 and 1 are the identity elements for addition and multiplication respectively

5. The additive inverse of a is -a

$$a + (-a) = -a + a = 0$$

6. The multiplicative inverse or reciprocal of *a* is symbolized as $\frac{1}{a}$ ($a \neq 0$)

$$a \times \frac{1}{a} = \frac{a}{a} = 1$$
, The product of a number and its reciprocal is 1

Two numbers are called *reciprocals* of one another if their product is 1. 1/a and a are reciprocal to each other. The reciprocal of p/q is q/p.

7. The algebraic definition of subtraction

$$\boldsymbol{a} - \boldsymbol{b} = \boldsymbol{a} + (-\boldsymbol{b})$$

Subtraction, in algebra, is defined as *addition* of the inverse.

8. The algebraic definition of division

 $a \div b = \frac{a}{b} = a \times \frac{1}{b}, \ b \neq 0$

Division, in algebra, is defined as *multiplication* by the reciprocal. Hence, algebra has two fundamental operations: addition and multiplication.

9. The inverse of the inverse

$$-(-a) = a$$

10. The relationship of b - a to a - b

$$\boldsymbol{b} - \boldsymbol{a} = -(\boldsymbol{a} - \boldsymbol{b})$$

11. The Rule of Signs for multiplication, division, and fractions

$$a(-b) = -ab$$
. $(-a)b = -ab$. $(-a)(-b) = ab$.
 $\frac{a}{-b} = \frac{-a}{b} = -\frac{a}{b}$ and $\frac{-a}{-b} = \frac{a}{b}$

Note: "Like signs produce a positive number; unlike signs, a negative number."

12. Rules for 0

$$a \cdot \mathbf{0} = \mathbf{0} \cdot a = \mathbf{0}$$

If $a \neq \mathbf{0}$, then $\frac{\mathbf{0}}{a} = \mathbf{0}$, but $\frac{a}{\mathbf{0}}$ is not defined

13. Multiplying/Factoring

m(a + b) = ma + mb The distributive rule/ Common factor

14. The same operation on both sides of an equation

If
$$a = b$$
, then $a + c = b + c$
If $a = b$, then $ac = bc$

We may *add* the same number to both sides of an equation; we may *multiply* both sides by the same number.

15. Change of sign on both sides of an equation

If
$$-a = b$$
, then $a = -b$

We may change every sign on both sides of an equation.

16. Change of sign on both sides of an inequality: Change of direction (sense)

If a < b, then -a > -b.

When we **change the signs** on both sides of an inequality, we must change the direction (sense) of the inequality.

17. The Four Forms of equations corresponding to the

Four Operations and their inverses

- If x + a = b, then x = b a. If x - a = b, then x = a + b. If ax = b, then $x = \frac{b}{a}$
- If $\frac{x}{a} = b$, then x = ab
- 18. Change of sense when solving an inequality

If
$$-ax < b$$
, then $x > -\frac{b}{a}$

19. Multiplication of fractions

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$
 and $a \times \frac{c}{d} = \frac{ac}{d}$

20. Division of fractions (Complex fractions)

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc} \text{ or equivalently } \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Division is multiplication by the **reciprocal**.

21. Addition/Subtraction of fractions

 $\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}$ Same denominator $\frac{a}{c} \pm \frac{b}{d} = \frac{ad \pm bc}{cd}$ Different denominators

22. Power and exponents

Let n be a natural number, then $a^n = \underbrace{a \times a \times a \times \dots \times a}_{n-factors}$

Here, a^n is called power, *n* is called exponent and *a* the

Laws of Exponents

Laws

Examples

1)	$x^1 = x$	$6^1 = 6$
2)	$x^{0} = 1$	$7^0 = 1$
3)	$x^{-1} = 1/x$	$4^{-1} = 1/4$
4)	$x^m x^n = x^{m+n}$	$x^2 x^3 = x^{2+3} = x^5$
5)	$x^m/x^n = x^{m-n}$	$x^6/x^2 = x^{6-2} = x^4$
6)	$(x^m)^n = x^{mn}$	$(x^2)^3 = x^{2 \times 3} = x^6$
7)	$(xy)^n = x^n y^n$	$(xy)^3 = x^3y^3$
8)	$(x/y)^n = x^n/y^n$	$(x/y)^2 = x^2 / y^2$
9)	$x^{-n} = 1/x^n$	$x^{-3} = 1/x^3$

And the Laws about Fractional Exponents:

10) $x^{1/n} = \sqrt[n]{x}$ $x^{1/3} = \sqrt[3]{x}$ 11) $x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$ $x^{\frac{2}{3}} = \sqrt[3]{x^2} = (\sqrt[3]{x})^2$

Proof of 11): $x^{\frac{m}{n}} = \sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m$ follows from the fact that $\frac{m}{n} = m \times (1/n) = (1/n) \times m$