## The Formal Rules of Algebra

## Summary of the formal rules of algebra on the set of real numbers

1. The axioms of "equality"

$$
\begin{array}{ll}
a=a & \text { Reflexive or Identity } \\
\text { If } \boldsymbol{a}=\boldsymbol{b} \text {, then } \boldsymbol{b}=\boldsymbol{a} . & \text { Symmetry } \\
\text { If } \boldsymbol{a}=\boldsymbol{b} \text { and } \boldsymbol{b}=\boldsymbol{c} \text {, then } \boldsymbol{a}=\boldsymbol{c} . & \text { Transitivity }
\end{array}
$$

These are the "rules" that govern the use of the = sign.
2. The commutative rules of addition and multiplication

$$
\begin{aligned}
& a+b=b+a \\
& a \cdot b=b \cdot a
\end{aligned}
$$

3. The associative rules of addition and multiplication

$$
\begin{aligned}
& (a+b)+c=a+(b+c) \\
& (a \times b) \times c=a \times(b \times c)
\end{aligned}
$$

4. The identity elements of addition and multiplication:

$$
\begin{aligned}
& a+0=0+a=a \\
& a \cdot 1=1 \cdot a=a
\end{aligned}
$$

0 and 1are the identity elements for addition and multiplication respectively
5. The additive inverse of $a$ is $-a$

$$
a+(-a)=-a+a=\mathbf{0}
$$

6. The multiplicative inverse or reciprocal of $\boldsymbol{a}$ is symbolized as $\frac{\mathbf{1}}{\boldsymbol{a}} \quad(\boldsymbol{a} \not \neq 0)$
$\boldsymbol{a} \times \frac{\mathbf{1}}{\boldsymbol{a}}=\frac{\boldsymbol{a}}{\boldsymbol{a}}=\mathbf{1}$, The product of a number and its reciprocal is $\mathbf{1}$
Two numbers are called reciprocals of one another if their product is 1 .
$1 / a$ and $a$ are reciprocal to each other.
The reciprocal of $\mathbf{p} / \mathbf{q}$ is $\mathbf{q} / \mathbf{p}$.
7. The algebraic definition of subtraction

$$
a-b=a+(-b)
$$

Subtraction, in algebra, is defined as addition of the inverse.
8. The algebraic definition of division

$$
a \div b=\frac{a}{b}=a \times \frac{1}{b}, b \neq 0
$$

Division, in algebra, is defined as multiplication by the reciprocal.
Hence, algebra has two fundamental operations: addition and multiplication.
9. The inverse of the inverse

$$
-(-\boldsymbol{a})=\boldsymbol{a}
$$

10. The relationship of $b-a$ to $a-b$

$$
b-a=-(a-b)
$$

11. The Rule of Signs for multiplication, division, and fractions

$$
\begin{aligned}
& a(-b)=-a b . \quad(-a) b=-a b . \quad(-a)(-b)=a b \\
& \frac{a}{-b}=\frac{-a}{b}=-\frac{a}{b} \text { and } \frac{-a}{-b}=\frac{a}{b}
\end{aligned}
$$

Note: "Like signs produce a positive number; unlike signs, a negative number."
12. Rules for 0

$$
a \cdot 0=0 \cdot a=0
$$

If $\boldsymbol{a} \neq \mathbf{0}$, then $\frac{\mathbf{0}}{\boldsymbol{a}}=\mathbf{0}$, but $\frac{\boldsymbol{a}}{\mathbf{0}}$ is not defined
13. Multiplying/Factoring

$$
m(a+b)=m a+m b \quad \text { The distributive rule/ Common factor }
$$

14. The same operation on both sides of an equation

If $\boldsymbol{a}=\boldsymbol{b}$, then $\boldsymbol{a}+\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{c}$
If $\boldsymbol{a}=\boldsymbol{b}$, then $\boldsymbol{a c}=\boldsymbol{b} \boldsymbol{c}$
We may add the same number to both sides of an equation; we may multiply both sides by the same number.
15. Change of sign on both sides of an equation

$$
\text { If }-a=b, \text { then } a=-b
$$

We may change every sign on both sides of an equation.
16. Change of sign on both sides of an inequality: Change of direction (sense)

If $\boldsymbol{a}<\boldsymbol{b}$, then $-\boldsymbol{a}>-\boldsymbol{b}$.
When we change the signs on both sides of an inequality, we must change the direction (sense) of the inequality.
17. The Four Forms of equations corresponding to the

Four Operations and their inverses
If $\boldsymbol{x}+\boldsymbol{a}=\boldsymbol{b}$, then $\boldsymbol{x}=\boldsymbol{b}-\boldsymbol{a}$.
If $\boldsymbol{x}-\boldsymbol{a}=\boldsymbol{b}$, then $\boldsymbol{x}=\boldsymbol{a}+\boldsymbol{b}$.
If $\boldsymbol{a} \boldsymbol{x}=\boldsymbol{b}$, then $\boldsymbol{x}=\boldsymbol{b} / \boldsymbol{a}$
If $\boldsymbol{x} / \boldsymbol{a}=\boldsymbol{b}$, then $\boldsymbol{x}=\boldsymbol{a} \boldsymbol{b}$
18. Change of sense when solving an inequality

$$
\text { If }-\boldsymbol{a} x<\boldsymbol{b}, \quad \text { then } \quad x>-\frac{b}{a}
$$

19. Multiplication of fractions

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d} \text { and } a \times \frac{c}{d}=\frac{a c}{d}
$$

20. Division of fractions (Complex fractions)

$$
\frac{\boldsymbol{a}}{\boldsymbol{b}} \div \frac{\boldsymbol{c}}{\boldsymbol{d}}=\frac{\boldsymbol{a}}{\boldsymbol{b}} \times \frac{\boldsymbol{d}}{\boldsymbol{c}}=\frac{\boldsymbol{a d}}{\boldsymbol{b} \boldsymbol{c}} \text { or equivalently } \quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

Division is multiplication by the reciprocal.
21. Addition/Subtraction of fractions

$$
\begin{array}{ll}
\frac{\boldsymbol{a}}{\boldsymbol{c}} \pm \frac{\boldsymbol{b}}{\boldsymbol{c}}=\frac{\boldsymbol{a} \pm \boldsymbol{b}}{\boldsymbol{c}} & \text { Same denominator } \\
\frac{\boldsymbol{a}}{\boldsymbol{c}} \pm \frac{\boldsymbol{b}}{\boldsymbol{d}}=\frac{\boldsymbol{a} \boldsymbol{d} \pm \boldsymbol{b} \boldsymbol{c}}{\boldsymbol{c} \boldsymbol{d}} & \text { Different denominators }
\end{array}
$$

## 22. Power and exponents

Let $n$ be a natural number, then $a^{n}=\underbrace{a \times a \times a \times \ldots \times a}_{n-\text { factors }}$
Here, $\boldsymbol{a}^{\boldsymbol{n}}$ is called power, $\boldsymbol{n}$ is called exponent and $\boldsymbol{a}$ the

## Laws

1) $x^{1}=x$
2) $x^{0}=1$
3) $x^{-1}=1 / x$
4) $\quad x^{m} x^{n}=x^{m+n}$
5) $\quad x^{m} / x^{n}=x^{m-n}$
6) $\quad\left(x^{m}\right)^{n}=x^{m n}$
7) $\quad(x y)^{n}=x^{n} y^{n}$
8) $\quad(x / y)^{n}=x^{n} / y^{n}$
9) $x^{-n}=1 / x^{n}$

## Examples

$$
6^{1}=6
$$

$$
7^{0}=1
$$

$$
4^{-1}=1 / 4
$$

$$
x^{2} x^{3}=x^{2+3}=x^{5}
$$

$$
x^{6} / x^{2}=x^{6-2}=x^{4}
$$

$$
\left(x^{2}\right)^{3}=x^{2 \times 3}=x^{6}
$$

$$
(x y)^{3}=x^{3} y^{3}
$$

$$
(x / y)^{2}=x^{2} / y^{2}
$$

$$
x^{-3}=1 / x^{3}
$$

## And the Laws about Fractional Exponents:

10) $\quad x^{1 / n}=\sqrt[n]{x}$

$$
\text { 11) } \quad x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}
$$

$$
\begin{aligned}
& x^{1 / 3}=\sqrt[3]{x} \\
& x^{\frac{2}{3}}=\sqrt[3]{x^{2}}=(\sqrt[3]{x})^{2}
\end{aligned}
$$

Proof of 11): $x^{\frac{m}{n}}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$ follows from the fact that

$$
\frac{m}{n}=m \times(1 / n)=(1 / n) \times m
$$

