Foundations for College
 University of North Georgia
 Fall 2016
 Exam \#1 Study Plan

The following is a general outline of topics and concepts which may be covered on Exam \#1.

Sets

- Definition of a set: what makes something a "member" of a set.
- Notation: how are sets described or communicated?
- Knowing the mathematical sets developed in class, for example, given a specific example knowing in which set(s) the example is a member of - See prior quizzes for examples and review.
- Be able to define and use the Fundamental Theorem of Arithmetic (CORI).
- Able to explain, in words or example, what is meant by the set of Real Numbers.

Algebra Power Tools

- Know all seven tools by "proper" name, their distinguishing features, and their specific formula as in: the Associative Tool - applies only to addition and/or multiplication where the result is unchanged when the association of elements that are being added or $\underline{\text { multiplied is changed }} \boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})=(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}$ or $\boldsymbol{a} \cdot(\boldsymbol{b} \cdot \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{b}) \cdot \boldsymbol{c}$
- You should be able to distinguish a Tool when it is being used to generate a line from a prior line: $-6 x+5-4 x=20$ Start

$$
\begin{aligned}
& -10 x+5=20 \text { Communative and associative(combine Like terms) } \\
& -10 x=15 \text { Additive Inverse } \\
& \quad x=-\frac{3}{2} \text { Multiplicative Inverse }
\end{aligned}
$$

- Know what action results in the Additive or Multiplicative Identity, that is something + something $=0$ and something \cdot something $=1$.
- Be able to give a valid example of each tool.

Fractions

- Conversion of fractions from different forms - see 1.1 Number Systems (CORI) and assignment.
- Be able to define a Prime Number and "de-compose" a composite number into a product of its Primes using a Factor Tree.
- Be able to "divide out" the "ONES"!
- Know the Fundamental Principle of Fractions: its formula and how it used to reduce (simplify) fractions or to create equivalent fractions with a different denominator.
- Be able to perform all operations on fractions to simplify. Always reduce a fraction to simplest terms by dividing out "ones".

Operations using Integers $-\mathbb{Z}$

- Addition, Subtraction (in terms of addition), Multiplication, and Division (in terms of multiplication).
- How the operations are related to the Additive and Multiplicative Inverse Tools.

Mathematical Notations and Definitions

- You should know and be able to use all the mathematical notations we have discussed and used thus far in class, i.e. Absolute Value.
- You should be able to define all the terms we have used and to give an example.

Order of Operations

- Be able to use the Order of Operations correctly to simplify an expression.
- Be able to "SHOW" what Order you are using as you move through the process of simplifying an expression.

Solving Simple Algebraic Equations

- You should be able to solve and "check" all the equations on both handouts used in class.
- Be able to determine the correct Least Common Denominator (LCD) and use it to clear fractions prior to solving an equation containing fractions. This also applies to using a power of 10 to clear decimals.
- You should be able to distinguish between results such as $-5=-5$ or $16 \neq 9$ and understand what these results mean.
- You should be able to "substitute" your result back into an equation to determine if that value is correct, i.e. "checking". In particular, you should be able check an equation when the substitute is a fraction!

When Taking the Exam

- Show all work on exam! I will not look at or use your scratch work in determining your score!
- Your work should be neat and clearly written. I must be able to understand your "flow" through a problem. If I cannot understand your work you will miss the entire problem.
- Given time, try to check your answers.

GOOD LUCK!

