7.3
 Quadratic Models

7.3 Modeling with Quadratic Equations

- Use the quadratic formula to solve equations.
- Graph a quadratic equation.
- Use a quadratic equation to model data.

Quadratic Equations

An equation of the form

$$
y=a x^{2}+b x+c \quad a \neq 0
$$

is called a quadratic equation.

As with linear equations in two variables, solutions to quadratic equations are ordered pairs of numbers.

Example: Verifying Solutions for Quadratic Equations in Two Variables

Determine whether $(1,2)$ is a solution for the quadratic equation $y=2 x^{2}-3 x+5$.

Solution

Substitute 1 for x and 2 for y.
$y=2 x^{2}-3 x+5$
$2=2(1)-3(1)+5$
$2=4$ FALSE
$(1,2)$ is not a solution.

Quadratic Equations

The graph of a quadratic equation is a parabola.

parabola
opening up
(a)

parabola
opening down
(b)

Quadratic Equations

The vertex of the graph of the quadratic equation $y=a x^{2}+b x+c$ occurs when

$$
x=\frac{-b}{2 a} .
$$

Example: Finding the Vertex of a Parabola

Find the vertex of the graph of
$y=2 x^{2}-4 x+5$.
Solution
$a=2, b=-4, c=5$

$$
\begin{aligned}
x & =\frac{-b}{2 a} \\
& =\frac{-(-4)}{2(2)}=\frac{4}{4}=1
\end{aligned}
$$

Example: Finding the Vertex of a Parabola (cont)

Substituting 1 for x, we get the y-coordinate of the vertex.

$$
\begin{aligned}
y & =2 x^{2}-4 x+5 \\
y & =2(1)^{2}-4(1)+5 \\
& =2-4+5 \\
& =3
\end{aligned}
$$

The vertex of the parabola is the point $(1,3)$.

Quadratic Formula

The solutions of the quadratic equation $a x^{2}+b x+c=0$ are

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

Combined we have $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Example: Using the Quadratic Formula to Solve an Equation

Use the quadratic formula to solve the equation $x^{2}+5 x-84=0$.
Solution
$a=1, b=5$, and $c=-84$
We substitute these values into the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad x=\frac{-5 \pm \sqrt{5^{2}-4(1)(-84)}}{2(1)}
$$

Example: Using the Quadratic Formula to Solve an Equation (cont)

$$
\begin{aligned}
& x=\frac{-5 \pm \sqrt{5^{2}-4(1)(-84)}}{2(1)} \\
& x=\frac{-5 \pm \sqrt{25+336}}{2} \\
& x=\frac{-5 \pm \sqrt{361}}{2} \\
& x=\frac{-5+19}{2}=7 \text { and } x=\frac{-5-19}{2}=-12
\end{aligned}
$$

The solutions are 7 and -12 .

Discriminant

- $b^{2}-4 a c$ is greater than 0: There are two distinct solutions to the equation.
- $b^{2}-4 a c$ is equal to 0 : There is only one solution to the equation.
- $b^{2}-4 a c$ is less than 0 : There are no realnumber solutions to this equation, since the square root of a negative number is not defined in the real-number system.

Example: Graphing a Quadratic Equation

Graph the quadratic equation $y=x^{2}-4 x-12$, which is a parabola, by doing the following:
a) Determine if the parabola is opening up or down.
b) Find the vertex of the parabola.
c) Determine the number of solutions to the equation $x^{2}-4 x-12=0$.
d) Find the x - and y-intercepts of the graph.
e) Draw the graph.

Example: Graphing a Quadratic Equation (cont)

Solution

a) Opens up because the coefficient for x^{2} is 1 .
b) Vertex

$$
\begin{aligned}
a=1, b & =-4, \text { and } c=-12 \\
x & =\frac{-b}{2 a}=\frac{-(-4)}{2 \cdot 1}=\frac{4}{2}=2
\end{aligned}
$$

Find the y-coordinate.

$$
y=2^{2}-4(2)-12=4-8-12=-16
$$

Vertex is at $(2,-16)$.

Example: Graphing a Quadratic Equation

 (cont)c) Number of solutions $x^{2}-4 x-12=0$ use the discriminant.
$a=1, b=-4$, and $c=-12$
$b^{2}-4 a c=(-4)^{2}-4(1)(-12)=16+48=64$
The discriminant is greater than 0 , there are two solutions so there will be two x-intercepts.

Example: Graphing a Quadratic Equation (cont)

d) There are two x-intercepts. Use the quadratic formula.

$$
\begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-12)}}{2(1)} \\
& =\frac{4 \pm \sqrt{16+48}}{2} \\
& =\frac{4 \pm \sqrt{64}}{2}=\frac{4 \pm 8}{2}=6 \text { and }-2 \\
& (-2,0) \text { and }(6,0)
\end{aligned}
$$

Example: Graphing a Quadratic Equation

 (cont)d) y-intercept

$$
\begin{aligned}
& y=x^{2}-4 x-12 \\
& y=(0)^{2}-4(0)-12 \\
& y=-12 \\
& (0,-12)
\end{aligned}
$$

Using the information we can now draw a reasonable graph. (see next slide)

Example: Graphing a Quadratic Equation (cont)

(a)

Powered by desmos
(b)

Modeling with Quadratic Equations

We will now apply our knowledge of quadratic equations to model building. After the release of a new video game, there are four stages in its life cycle:

- Stage 1: Sales increase rapidly. Everyone wants to play!
- Stage 2: The sales are still growing, but the increase from week to week is not as great as in the early phase.

Modeling with Quadratic Equations (cont)

- Stage 3: The product is still selling, but now each week's sales are a little lower than the week before.
- Stage 4: The market is saturated, and sales are now dropping rapidly.

Modeling with Quadratic Equations (cont)

Stage 2: Demand is still increasing, but not as rapidly.

Stage 1: Rapid increase in demand from week to week.

Stage 3: Demand is beginning to decrease.

Stage 4: Demand is falling off rapidly.

