## 2.3

## Set Theory



### 2.3 Set Operations

- Perform the set operations of union, intersection, complement, and difference.
- Be able to perform set operations in the proper order.
- Be able to apply DeMorgan's laws in set theory.
- Use the Inclusion-Exclusion Principle to calculate the cardinal number of the union of two sets.
- Use Venn diagrams to prove or disprove set theory statements.


## Union of Sets

The union of sets $A$ and $B$, written $A \cup B$, is the set of elements that are members of either $A$ or $B$ (or both). In set-builder notation, $A \cup B=\{x: x$ is a member of $A$ or $x$ is a member of $B\}$.
The union of more than two sets is the set of all elements belonging to at least one of the sets.


## Example: Finding the Union of Sets

Find the union of the following pairs of sets.
$A=\{1,3,5,6,8\}, B=\{2,3,6,7,9\}$
Solution
$A \cup B=\{1,3,5,6,8\} \cup\{2,3,6,7,9\}=$ the set of elements that are in $A$ or $B$ or both $=$
$\{1,3,5,6,8,2,3,6,7,9\}=\{1,2,3,5,6,7,8$, $9\}$. Notice in our final answer how we listed the elements in order and did not list duplicate elements because doing so does not affect set equality.

## Intersection of Sets

The intersection of sets $A$ and $B$, written $A \cap B$, is the set of elements that are common to both $A$ and $B$. In set-builder notation, $A \cap B=\{x: x$ is a member of $A$ and $x$ is a member of $B\}$.
The intersection of more than two sets is the set of elements that belong to each of the sets. If $A \cap B=\varnothing$, then
 we say that $A$ and $B$ are disjoint.

## Example: Finding the Intersection of Sets

Find the intersection of the following pairs of sets.
$A=\{1,3,5,6,8\}, B=\{2,3,6,7,9\}$
Solution
$A \cap B=\{1,3,5,6,8\} \cap\{2,3,6,7,9\}=$ the set of elements that are in $A$ and $B=\{3,6\}$

## Set Complement

If $A$ is a subset of the universal set $U$, the complement of $A$ is the set of elements of $U$ that are not elements of $A$. This set is denoted by $A^{\prime}$ (pronounced A prime). In set-builder notation,

$$
A^{\prime}=\{x: x \in U \text { but } x \notin A\} .
$$



## Example: Finding the Complement of

## Sets

Find the complement of each set. We have stated a universal set for each set.
a) $U=\{1,2,3, \ldots, 10\}$ and $A=\{1,3,5,7,9\}$
b) $U$ is the set of people living in the United States, and $T$ is the set of people who have photos on Instagram.
c) $U$ is the set of cards in a standard 52-card deck, and $F$ is the set of face cards.

## Example: Finding the Complement of Sets (cont)

## Solution

a) $U=\{1,2,3, \ldots, 10\}$ and $A=\{1,3,5,7,9\}$ $A^{\prime}$ is the set of elements in $U$ that are not in $A$, so $A^{\prime}=\{2,4,6,8,10\}$.
b) $U$ is the set of people living in the United States, and $T$ is the set of people who have photos on Instagram.
$T^{\prime}=$ is the set of people living in the United States who do not have photos on Instagram.

## Example: Finding the Complement of Sets (cont)

c) $U$ is the set of cards in a standard 52-card deck, and $F$ is the set of face cards.
$F^{\prime}=$ is the set of nonface cards.

## Set Difference

The difference of sets $B$ and $A$ is the set of elements that are in $B$ but not in $A$. This set is denoted by $B-A$. In set-builder notation,
$B-A=\{x: x$ is a member of $B$ and $x$ is not a member of $A\}$.


## Example: Finding the Difference of Sets

Find $\{3,6,9,12\}-\{x: x$ is an odd integer $\}$.

## Solution

We start with $\{3,6,9,12\}$ and remove all the odd integers to get $\{6,12\}$.

## Order of Set Operations

Just as we must perform arithmetic operations in a certain order, set notation specifies the order in which we perform set operations.

## Example: Order of Set Operations

Let $U=\{1,2,3, \ldots, 10\}, E=\{x: x$ is even $\}$,
$B=\{1,3,4,5,8\}$, and $A=\{1,2,4,7,8\}$.
Find $(A \cup B)^{\prime} \cap\left(E^{\prime} \cup A\right)$.
Solution

$$
\begin{aligned}
& \text { 1. }(A \cup B)=\{1,2,3,4,5,7,8\} \\
& \text { 2. }(A \cup B)^{\prime}=\{6,9,10\} \\
& \text { 3. } \\
& \text { 4. }\left(E^{\prime} \cup\{1,3,5,7,9\}\right. \\
& \text { 4. }\left(E^{\prime} \cup A\right)=\{1,2,3,4,5,7,8,9\} \\
& \text { 5. }(A \cup B)^{\prime} \cap\left(E^{\prime} \cup A\right)=\{9\}
\end{aligned}
$$

## Order of Set Operations

## DeMorgan's Laws for Set Theory If $A$ and $B$

 are sets, then $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ and $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
## Order of Set Operations

## The Inclusion-Exclusion Principle If $A$ and $B$ are sets, then $n(A \cup B)=n(A)+n(B)-n(A \cap B)$.

