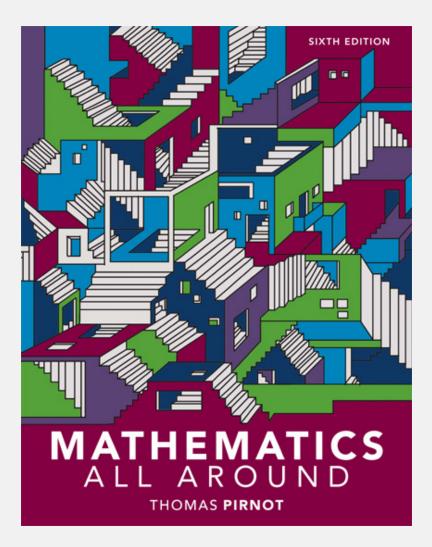
2 Set Theory



Copyright © 2018, 2014, 2010 Pearson Education Inc.

2.1 The Language of Sets

- Specify sets using both listing and set-builder notation.
- Understand when sets are welldefined.
- Use the element symbol properly.
- Find the cardinal number of sets.

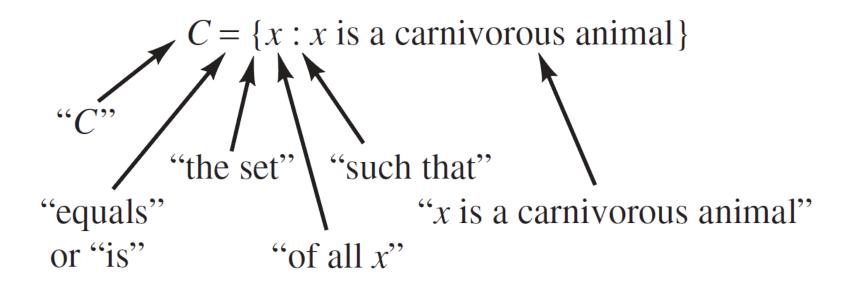
Representing Sets

Set – collection of objects

Element – a member of a set

Representing Sets

Set-builder notation



A set is *well-defined* if we are able to tell whether any particular object is an element of that set.

Example: Determining Whether a Set Is Well Defined

Which sets are well defined?

a) $A = \{x : x \text{ is a winner of an Academy Award}\}$

b) $T = \{x : x \text{ is tall}\}$

Pearson ALWAYS LEARNING Copyright © 2018, 2014, 2010 Pearson Education Inc.

Example: Determining Whether a Set Is Well Defined (cont)

Solution

a) $A = \{x : x \text{ is a winner of an Academy Award}\}$ This set is well defined because we can always determine whether or not a person belongs to set A. Leonardo DiCaprio, Felicity Jones, and Ethan Hawke are members of set A, but Hillary Clinton, Harry Potter, and Drake are not members of A because they have never won an Oscar.

Example: Determining Whether a Set Is Well Defined (cont)

b) $T = \{x : x \text{ is tall}\}$

Whether or not a person belongs to this set is a matter of how we interpret *tall*; therefore, *T* is not well defined. Can you think of one situation in which a person who is 6 feet tall would be considered tall and a different situation in which that same person would be considered short? The set that contains no elements is called the **empty set** or **null set.** This set is labeled by the symbol \emptyset . Another notation for the empty set is $\{$ $\}$.

Example: Using Similar Notations Precisely

a) Does {Ø} have the same meaning as Ø?
b) Do {Ø} and {0} mean the same thing?
Solution

a) Note that $\{\emptyset\}$ is not the same as \emptyset . To make this more clear, you might think of a set as a paper bag that you might get at a supermarket. Then, the empty set \emptyset corresponds to an empty bag, whereas the set $\{\emptyset\}$ could be visualized as one bag containing a second bag, which is empty.

Example: Using Similar Notations Precisely (cont)

b) Do $\{\emptyset\}$ and $\{0\}$ mean the same thing?

Similarly, {0} is not the same as { \emptyset }. If we make bag drawings, then we see that { \emptyset } corresponds to a bag containing an empty bag, whereas {0} corresponds to a bag containing the number zero.

The **universal set** is the set of all elements **under consideration** in a given discussion. We often denote the universal set by the capital letter *U*.

Consider female consumers living in the U.S. The universal set is

 $U = \{x : x \text{ is a female cosumer living in the U.S.}\}$

The Element Symbol

∈ means "is an element of" ∉ means "is *not* an element of"

Replace the symbol # in each statement by either \in or \notin .

- a) 3 # {2, 3, 4, 5}
- b) {5} # {2, 3, 4, 5}
- c) Bill Gates # {x : x is a billionaire}
- d) jogging # {y : y is an aerobic exercise}
- e) the ace of hearts # {f: f is a face card in a standard 52-card deck}

Example: Using Set Element Notation (cont)

Solution

- a) 3 = {2, 3, 4, 5}
- b) {5} ∉ {2, 3, 4, 5}
- c) Bill Gates $\in \{x : x \text{ is a billionaire}\}$
- d) jogging $\in \{y : y \text{ is an aerobic exercise}\}$
- e) the ace of hearts $\notin \{f : f \text{ is a face card in a standard 52-card deck}\}$

Cardinal Number

The number of elements in set A is called the **cardinal number** of set A and is denoted n(A). A set is **finite** if its cardinal number is a whole number. An **infinite** set is one that is not finite.

The *n* reminds us of the (A) Capital *A* reminds us that we are dealing with a set.

Example: Finding the Cardinal Number of a Set

State whether each set is finite or infinite. If it is finite, state its cardinal number using n(A) notation.

a) $P = \{x : x \text{ is a planet in our solar system}\}$

b)
$$N = \{1, 2, 3, ...\}$$

c) $A = \{y : y \text{ is a person living in the United} States who is not a citizen}$

d) Ø

e) $X = \{ \{1, 2, 3\}, \{1, 4, 5\}, \{3\} \}$

Example: Finding the Cardinal Number of a Set (cont)

- a) $P = \{x : x \text{ is a planet in our solar system}\}$
- There are 8 planets. P is a finite set: n(P) = 8. b) $N = \{1, 2, 3, ...\}$

The set of counting numbers is an infinite set.

c) $A = \{y : y \text{ is a person living in the United} States who is not a citizen}$

There are a finite number of people living in the United States who are not citizens; however, we probably do not know n(A).

Example: Finding the Cardinal Number of a Set (cont)

d) \varnothing

The empty set has no elements, so it is a finite set. Thus, $n(\emptyset) = 0$.

e)
$$X = \{ \{1, 2, 3\}, \{1, 4, 5\}, \{3\} \}$$

Set X contains three objects: the set $\{1, 2, 3\}$, the set $\{1, 4, 5\}$, and the set $\{3\}$. Therefore, n(X) = 3.