Set Theory

2.1 The Language of Sets

- Specify sets using both listing and set-builder notation.
- Understand when sets are welldefined.
- Use the element symbol properly.
- Find the cardinal number of sets.

Representing Sets

Set - collection of objects

Element - a member of a set

Representing Sets

Set-builder notation

Representing Sets

A set is well-defined if we are able to tell whether any particular object is an element of that set.

Example: Determining Whether a Set Is Well Defined

Which sets are well defined?
a) $A=\{x: x$ is a winner of an Academy Award $\}$
b) $T=\{x: x$ is tall $\}$

Example: Determining Whether a Set Is

 Well Defined (cont)
Solution

a) $A=\{x: x$ is a winner of an Academy Award $\}$

This set is well defined because we can always determine whether or not a person belongs to set A. Leonardo DiCaprio, Felicity Jones, and Ethan Hawke are members of set A, but Hillary Clinton, Harry Potter, and Drake are not members of A because they have never won an Oscar.

Example: Determining Whether a Set Is

 Well Defined (cont)b) $T=\{x: x$ is tall $\}$

Whether or not a person belongs to this set is a matter of how we interpret tall; therefore, T is not well defined. Can you think of one situation in which a person who is 6 feet tall would be considered tall and a different situation in which that same person would be considered short?

Representing Sets

The set that contains no elements is called the empty set or null set. This set is labeled by the symbol \varnothing. Another notation for the empty set is $\}$.

Example: Using Similar Notations Precisely

a) Does $\{\varnothing\}$ have the same meaning as \varnothing ?
b) Do $\{\varnothing\}$ and $\{0\}$ mean the same thing?

Solution
a) Note that $\{\varnothing\}$ is not the same as \varnothing. To make this more clear, you might think of a set as a paper bag that you might get at a supermarket. Then, the empty set \varnothing corresponds to an empty bag, whereas the set $\{\varnothing\}$ could be visualized as one bag containing a second bag, which is empty.

Example: Using Similar Notations Precisely (cont)

b) Do $\{\varnothing\}$ and $\{0\}$ mean the same thing?

Similarly, $\{0\}$ is not the same as $\{\varnothing\}$. If we make bag drawings, then we see that $\{\varnothing\}$ corresponds to a bag containing an empty bag, whereas $\{0\}$ corresponds to a bag containing the number zero.

Representing Sets

The universal set is the set of all elements under consideration in a given discussion. We often denote the universal set by the capital letter U.

Consider female consumers living in the U.S. The universal set is
$U=\{x: x$ is a female cosumer living in the U.S. $\}$

The Element Symbol

\in means "is an element of" \notin means "is not an element of"

Example: Using Set Element Notation

Replace the symbol \# in each statement by either \in or \notin.
a) $3 \#\{2,3,4,5\}$
b) $\{5\} \#\{2,3,4,5\}$
c) Bill Gates \# $\{x: x$ is a billionaire $\}$
d) jogging $\#\{y: y$ is an aerobic exercise $\}$
e) the ace of hearts \# \{f: f is a face card in a standard 52-card deck\}

Example: Using Set Element Notation (cont)

Solution
a) $3 \in\{2,3,4,5\}$
b) $\{5\} \notin\{2,3,4,5\}$
c) Bill Gates $\in\{x: x$ is a billionaire $\}$
d) jogging $\in\{y: y$ is an aerobic exercise $\}$
e) the ace of hearts $\notin\{f$: f is a face card in a standard 52-card deck\}

Cardinal Number

The number of elements in set A is called the cardinal number of set A and is denoted $n(A)$. A set is finite if its cardinal number is a whole number. An infinite set is one that is not finite.

Example: Finding the Cardinal Number of a Set

State whether each set is finite or infinite. If it is finite, state its cardinal number using $n(A)$ notation.
a) $P=\{x: x$ is a planet in our solar system $\}$
b) $N=\{1,2,3, \ldots\}$
c) $A=\{y: y$ is a person living in the United States who is not a citizen\}
d) \varnothing
e) $X=\{\{1,2,3\},\{1,4,5\},\{3\}\}$

Example: Finding the Cardinal Number of

 a Set (cont)a) $P=\{x: x$ is a planet in our solar system $\}$ There are 8 planets. P is a finite set: $n(P)=8$. b) $N=\{1,2,3, \ldots\}$

The set of counting numbers is an infinite set.
c) $A=\{y: y$ is a person living in the United States who is not a citizen\}
There are a finite number of people living in the United States who are not citizens; however, we probably do not know $n(A)$.

Example: Finding the Cardinal Number of a Set (cont)

d) \varnothing

The empty set has no elements, so it is a finite set. Thus, $n(\varnothing)=0$.
e) $X=\{\{1,2,3\},\{1,4,5\},\{3\}\}$

Set X contains three objects: the set $\{1,2,3\}$, the set $\{1,4,5\}$, and the set $\{3\}$. Therefore, $n(X)=3$.

