University of North Georgia Quantitative Skills and Reasoning Exam #2 Fall 2019 - M. Goodroe

Name: Ky

Directions: Answer each question completely on the exam. Seventy-five percent of the total points on a question will be awarded to your explanation and twenty-five percent to the correct answer. Each question is worth four points.

1) Negate the following quantified statement: "Some little dogs are not scared of their own shadow."

All little clogs are scared of their shadow.) No little dogs are not scared of their shadow.

2) Let A and B be sets with cardinal numbers n(A) = a and n(B) = b. If $B \subseteq A$, then is n(B) = n(A) - an(A-B) (True) or False? Support your position. Hint: try specific cardinal numbers for the sets and calculate the result. Let m(A) = 5 and m(B) = 2

$$n(B) = n(A) - n(A - B)$$

$$= 5 - (5 - a)$$

$$= 5 - 3$$

3) Is $(S \cap T')' \equiv S' \cup T$? You must prove your position for credit.

Let
$$U = \{1, 2, 3, 4\}$$

 $S = \{1, 3, 4\}$
 $S = \{2, 3\}$

$$\int_{\mathbb{R}^{3}} dt = \{1, 2, 3, 4\} \quad (\{1, 3, 4\} \land \{2, 3\}')' \equiv \{1, 3, 4\} \land \{2, 3\}' \\
J = \{2, 3, 4\} \quad (\{1, 3, 4\} \land \{1, 4\})' \equiv \{2, 3\} \\
J = \{2, 3\} \quad (\{1, 4\})' \equiv \{2, 3\}$$

4) Determine if the following statements are logically equivalent: $\sim (\sim p \lor \sim q)$; $(p \lor q)$

5) Describe the shaded region using <u>set theory notation</u> and <u>standard set notation</u>, i.e. $\{a, b, c\}$. Use the following sets: $U = \{1, 2, ..., 6\}$; $A = \{1, 3, 4, 5\}$; $B = \{2, 3, 5\}$; $C = \{2, 3, 4, 6\}$

6) Find the Standard Deviation (s) and the coefficient of Variation (CV) of the following by showing all calculations: 6, 8, 21, 4, 19, 7

calculations: 6, 8, 21, 4, 19, 7			n = 6 $\bar{\chi} = \frac{\Sigma \chi}{n} = \frac{65}{6} = 10.83 \%$
	$ar{x}$	10.834	$ \chi = \frac{1}{m} = \frac{1}{6} $ $ (\chi - \overline{\chi}) $ $ 6 - \overline{\chi} = -4.834 $ $ (\chi - \overline{\chi})^{2} $ $ 23.37 $
	s	7.25	$ 8 - \overline{\chi} = -2.834 21 - \overline{\chi} = 10.166 4 - \overline{\chi} = -6.834 46.70 $
	CV	66.92	$ \begin{array}{r} $
) ²	$=\sum (\gamma -$	$\left(\frac{\overline{\chi}}{\chi}\right)^2 = \frac{262.8}{}$
	$\Delta = 7$	52.5595	$0.100 = \frac{7.25}{100}$

2 | Page

7) In your Psychology course you have earned the following exam scores: 74, 81, 56, and 70. With one exam remaining, what do you need to score so that you pass the course with a "C"?

8) Show if the following statements are logically equivalent or not: "If Stephanie does not study for the quiz, then she will not miss the game." and "If Stephanie studies for the quiz, then she will miss the

- 9) Write the statement in symbolic form: "An automatic transmission is included or power door locks are not optional." $p = \sqrt{-q}$
- 10) Find the *Mean, Median, Mode, Five-Number Summary,* and construct a *Box-and-Whisker plot* for the following: 6, 4, 2, 8, 11, 6, 6, 4, 8, 11, 6, 2, 13, 8, 6, 6, 2, 4, 8, 6

Mean: 6.95

Median: 6

Mode: 6

11) State the *Contrapositive* of the following statement: $a \rightarrow \sim (b \lor c)$

12)
$$\emptyset \subseteq any \ set \ S$$
 True or False? Explain for credit.

BONUS(Five Points)

First negate "If a coin and a six-sided cube is used, then the list of all possible outcomes is even." and then use a DeMorgan law re-phrase the statement in a logically equivalent form.

