Multiple Linear Regression Excel 2010Tutorial
For use when at least one independent variable is qualitative

This tutorial combines information on how to obtain regression output for Multiple Linear Regression
from Excel (when qualitative variables are included) and some aspects of understanding what the output
is telling you. Most interpretation of the output will be addressed in class. This tutorial assumes that you
have been through the Multiple Linear Regression (basic) tutorial.

The scenarios for this (and all of the Excel Regression tutorials) are described in the Regression Scenarios
Word file at: http://faculty.ung.edu/kmelton/Documents/RegressionScenarios.docx.

The Reg3 Excel file for this tutorial is located at http://faculty.ung.edu/kmelton/Data/Reg3.xIsx. The
Excel file for this tutorial contains data on two sheets accessed at the bottom left of the page. Each sheet
is related to one of the scenarios described in the Word document.

Obtaining Multiple Linear Regression Output (when a variable is qualitative — i.e., categorical)

In the previous tutorials, we started with the model statement. That is problematic here, since each
variable in the model statement should have numerical values. This major difference between obtaining
output for models with qualitative variables must be address at the very start of the analysis. How do you
change a variable that is not quantitative into something that Excel can use to crunch the numbers? We
need to use a method that will provide results that reflect the relationships that exist between the
dependent variable and the “levels” of the qualitative variable. Also, the method must provide results that
are repeatable—i.e., a different researching using the same data set (same raw data) should get the same
results.

[Warning 1: The description in the paragraph does not lead to correct results.] Many people are tempted
to define a single variable and assign numbers to each “level” of the qualitative variable. For example, if
we were trying to include “Home Campus” as a predictor variable where students could be identified as
being from any one of four home campuses, we might be tempted to say let Campus = 1 for location A; 2
for location B; 3 for location C; and 4 for location D. Following this logic, the model statement would
include a variable called Campus and the values 1, 2, 3, and 4 would be entered into Excel. This sounds
easy enough, but if two researchers code the campuses differently, the results may be totally different!
We need to find a better way.

[Warning 2: The description in this paragraph also leads to problems.] Another suggestion would be to
identify a new variable for each level of the qualitative variable and assign one of two values to each new
variable (one value for true and another for false). Assigning values of 1 for true and O for false would be
consistent with many other commands in Excel and in computer operations in general. Using our
previous example, the categorical variable “Home Campus” would translate into four quantitative
variables for analysis—LocA, LocB, LocC, and LocD. In this case if a student’s home campus is
Location A, the row of data for this student would show a value of 1 for LocA and a value of O for LocB,
LocC, and LocD. When you ask Excel to crunch the numbers, you will see some strange output (and
strange can be seen in a variety of ways). Sometimes you will see a period (.) or a zero (0) where you
expect to see numbers; other times you will see #NUM! where you expect to see a p value. What has
happened is that you have given Excel too much information!

[Finally, something that will work.] The previous approach was on the correct path. Rather than creating
a new variable for each of the levels of the qualitative variable, we should drop one of these new
variables. Therefore, if there are n levels of the qualitative variable, we should define n-1 new variables.
These new variables are called “Indicator Variables” or “Dummy Variables,” and are coded with 0 or 1.
When we add the new variables to our model statement, we MUST remember that all of these new

Kim I. Melton, Ph.D. University of North Georgia, Dahlonega, GA 30597



variables together represent the one conceptual variable. Therefore, any analysis about whether the
conceptual variable is needed must consider these variables as a group (rather than individually).

Think about our previous example, if you know the values for three of the location variables, isn’t the
value for the other one obvious? That fourth piece of information is redundant. Giving redundant
information causes problems in the math (similar to trying to divide by zero). So we could add three
variables LocA, LocB, and LocC (each with its own coefficient) to our data set to represent the four home
campuses. Then any theory that relates to home campus with have all three of these variables in the
model (if campus is significant) and would have none of these three variables in the model (if campus is
not significant). A model with one or two of the Loc variables would not make sense (since this would be
like having part of the conceptual variable in the model and part of it out).

Now the steps to obtain the output:

o |dentify any qualitative variable(s) in your theory. For each qualitative variable, determine (n)
the number of levels of the variable and define n-1 Dummy Variables to represent that qualitative
variable where each Dummy Variable will be assigned a value of 0 or 1 in the spreadsheet.
Naming the Dummy Variables so that you can remember what they represent is suggested. For
example, saying “X; = 1 if the student’s home campus is Location A and 0 if not” is more
difficult to keep up with than saying “LocA = 1 if the student’s home campus is Location A and 0
if not.”

o Write your model statement including the Dummy Variables. Be sure to keep a “note to self” that
all n-1 Dummy Variables used to describe a qualitative variable must be viewed together.

e From here, you will continue with the same steps as in the previous tutorial

0 Recognize the way Excel wants the data to be displayed in the with the Xs in consecutive
columns in the spreadsheet
Enter (or confirm) data in the needed format
Use the Regression procedure in the Data Analysis Tools to obtain output
Clean up the output
Move on to the hard part...understanding what the output tells you

O 00O

Example 1 (Where the independent variables include one quantitative and one qualitative predictor
variable—and where there are only two outcomes possible for the qualitative variable): Using the
predicting weight example [“Weight” worksheet accessed at the lower left], consider the analysis that
would be needed to address the following theory/question: Should we consider both height and gender
when predicting someone’s weight?

To evaluate this theory, we need to recognize that gender is a qualitative variable with two possible
outcomes (Male or Female). Since there are two possible outcomes, we need to define one “Dummy
Variable.” Suppose, we define GenderF to be 1 if we are talking about a Female and O if we are talking
about a Male. This would lead to the following model statement to guide our analysis:

Weight = B, + B;Height + B,GenderF + ¢

[After we get output for this model, we will see how the output would differ if we had defined our
Dummy Variable in terms of Males.]

From the Model statement we recognize that we need a column for Weight, a column for Height, and a
column for GenderF—and the columns for Height and GenderF need to be next to each other. You will
see that the Weight and Height data have been copied into columns G and H; and the name for the new
variable has been entered in cell 11. We could use a “brute force” approach to assign a 1 when the value
column D is F; and assign a 0 when the value in column D is M. With small data sets this may be
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reasonable, but for large data sets this is time consuming and increases the likelihood of mistakes.
Instead, we will let Excel do the work for us using the IF function. The function is set up to include three
pieces of information inside the parentheses:

=IF(comparison, value if true, value if false)
In this example, we want to look at the value in column D to see if that value is the letter F. If the value is
an F, we want to put a 1 in the same row of column I. If the value is not an F, we want to put a 0 in the
same row of column I. Since we will be asking Excel to look for an F (characters) rather than numbers,
we will need to put the F in quotes ( “F”). To enter the function in the first cell for GenderF, click on cell
12 and enter =IF(D2="F",1,0) and hit enter. This tells Excel, “If cell D2 has the letter F in it, puta 1 in
the current cell; otherwise put a 0 in the current cell. Then go back to cell 12 and copy/fill the function
down the column to populate the data in the column. Once this is done, you are ready to select the data to
obtain the regression output. The following two figures show the data and the Regression Dialogue box.
Note that the model statement shows Weight as Y and Height and GenderF as X, so this identifies the
data to select in the dialogue box.
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Input
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The following output appears when you click OK.
SUMMARY OQUTPUT

Regression Statistics
Multiple R 0.823098
R Square 0.67749
Adjusted R Squ 0.657944
Standard Error  21.73083

Observations 36
ANOVA

df 55 MS F Sig. F
Regression 2 32736.08 16368.04 3466123 T7.78E-09
Residual 33 15583.56 472.2291
Total 35 48319.64

Coefficientstandard Err { Stat P-value

Intercept -28.211 88.66431 -0.31818 0.752355
Height 2.929445 1.218824 2403502 0.022017
GenderF -35.4611 12.09736  -2.93131 0.006088

Remember that you only needed one variable to account for both genders (GenderF takes on a value of 1
if we are talking about females and a value of 0 if we are talking about males). Therefore, the one
regression equation identified in the coefficient section allows estimates for males and females:

General equation: Weight(hat) = -28.211 + 2.929Height — 35.461GenderF
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For Males GenderF=0 Weight(hat) = -28.211 + 2.929Height — 35.46(0)
=-28.211 + 2.929Height
For Females GenderF=1  Weight(hat) = -28.211 + 2.929Height — 35.461(1)
=-63.672 + 2.929Height
Using this model statement produces two lines (one for males and one for females) and the lines are
parallel to each other (since they have the same slope but different intercepts). We will address the
guestion about whether these lines should be parallel to each other in another tutorial.

Lingering question 1: Wasn’t the choice of 1 for Female arbitrary? What if we had worked the problem
the “other way around”? What if we had coded our gender variable as 1 for Males and 0 for Females?
In the following output GenderM = 1 if the individual is a male and 0 if the individual is a female.

Weight = 3 + B;Height + B,GenderM + ¢
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.823098
R Square 0.67749
Adjusted R Squ 0.657944
Standard Error  21.73083

Observations 36
ANOVA

df 85 MS F Sig. F
Regression 2 32736.08 16368.04 34.66123 7.78E-09
Residual 33 1558356 4722291
Total 35 48319.64

Coefficientdandard Em_ t Stat P-value

Intercept -63.6721 79.01772 -0.8058 0426129
Height 2929445 1.218824 2.403502 0.022017
Gender 35.467114 12.09736 2.931313 0.006088

If you compare this output to the output using GenderF, you will see that the Summary Output and the
ANOVA table are identical; and part of the coefficient section “matches”. But some of the entries in the
coefficient section look a little different. The differences are not related to whether a variable is
significant (or not) nor related to the estimates for weights of individuals with the same height and gender
characteristics. Simply the equation in this output to show how each gender’s weight would be estimated
and you will find:

For Males Weight(hat) = -28.211 + 2.929Height and

For Females  Weight(hat) = -63.672 + 2.929Height

The coefficient of -35.461 for GenderF in the first output says that for two individuals of the same height
(but different gender), the female would be expected to weigh 35.461 pounds less than the male. The
coefficient of 35.461 for GenderM in the second output says that for two individuals of the same (but
different gender), the male would be expected to weigh 35.461 pounds more than the female. This is two
ways of saying the same thing!

Lingering question 2: What would the output look like if | had put in a variable for each gender? The
following output uses the model statement: Weight = 3, + B;Height + B,GenderF + B;GenderM + .
Note the row for GenderM in the coefficient section—a clear indication “you goofed.”
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SUMMARY QUTPUT

Regression Statistics
Multiple R 0.823098
R Square 0.67749
Adjusted R Squ 0.627641
Standard Error  21.73083

Observations 36
ANOVA

df 38 s F Sig. F
Regression 3 32736.08 1091203 34 66123 36E-10
Residual 33 1R683 56 472 2291
Total 36 48319 64

Coefficientstandard Er ¢ Stat P-value

Intercept -28.211 83.66431 -0.31818 0.752355
Height 2.929445 1.218824 2.403502 0.022017
GenderM 0 0 65535  #NUM!

GenderF -35.4611 12.09736 -2.93131 0.006088

Other Examples:

Example 2 (Where the only independent variable is a qualitative variable with more than two possible
outcomes for that variable) Predicting time to relief for a medicine [“Time” Worksheet accessed at the
lower left of the same file.]: In this example, we want to see if the method of administration of a drug can
be used to estimate the time that it will take for the patient to feel relief. The drug can be administered in
three different forms: a Pill to be swallowed, a Liquid to be swallowed, or as a shot. All times are
measured from the time that the patient received the medicine until that same patient reaches some
specified level of better (e.g., temperature drops to normal).

Since method of administration of the drug is a qualitative variable and there are there are three ways the
drug can be administered, we will need two Dummy Variables. If we define the following:

Pill = 1 if the drug is administered in pill form; and Pill = 0 if not in pill form

Lig = 1 if the drug is administered in liquid form; and Lig = 0 if not in liquid form
Then we can use the following model statement: Time = o + B4Pill + B,Liq + ¢

Based on this model statement, we will need a column for Time, a column for Lig, and a column for Pill.
Remember that the data were originally provided in a table. The current file has each variable in a
separate column and the data for Time have been copied into column E and the headings of Liq and Pill
have been added in columns F and G. To assign the 0s and 1s to these two columns, we will use the IF
function. In cell F2, we will look to see if the value in cell C2 is “Liquid. If so, Excel should enter a 1;
otherwise Excel should enter a 0. Likewise in cell G2, we will look to see if the value in cell C2 is “Pill.”
Once we have the first data rows coded, we can copy the function down the columns.

fe| =IF(C2="Liquid" 1,0}
C D E F G -
Method Time Li Pil
Liquid 2 il 0
Liquid 25 1 0
Liquid 20 1 0
Liquid 25 1 0
Pill 28 0 1
Pill 24 0 1
Pill 23 0 1
Pill 25 0 1
Shot 19 0 0
Shot 17 0 0
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From here, the possess to obtain output is the same as in the previous regression examples. The model
statement shows the Y variable isTime and the X variables are Lig and Pill. Selecting these in the
dialogue box and clicking OK provides the following.

Regression |i|éj‘ M M o = Q R
Tnput SUMMARY OUTPUT
— Ok
Input Y Range: $E51:56425 3 Regression Statistics
. Cancel .Q'
Input ¥ Range: SF51:5G5525 5 Multiple R 0.802334
R Square 0.64374
V| Labels Constantis Zero Iﬂl Adjusted R Squ 0.609811
Confidence Level: 93 % Standard Error 2042699
Obsemvations 24
Output options
@ Qutput Range: sMs1 £ ANOVA
Mew Worksheet Ply: df SS MS F Sig. F
New Workbook Regression 2 158.3333 7916667 18.9729 1.97E-05
Residuals Residual 21 87.625 4172619
Residuals Total 23 2459583
Standardized Residuals Line Fit Plots
Normal Probabiity Coefficientstandard Err__ t Stai P-value
Normal Probability Plots Intercept 19125 0722203 2648147 1.28E-17
- Lig 375 1.021349 3.671613 0.001421
Pill 625 1021349 6119355 451E-06

This time we will need to be careful about interpreting the p values in the coefficient section. The
variables Liq and Pill together represent the three methods of administration of the drug. Remember if
Lig =0 and Pill = 0, the drug was administered in Shot form.

But what if? In the previous output we omitted Shot when we defined our Dummy variables. What
would have happened if you had “omitted” a different method of administration? Consider the output

from two other models that could have been used:

Time = o + BPill + B,Shot + & [omits Liquid] output on the left below
Time = o + B;Shot + B,Liq + & [omits Pill] output on the right below

SUMMARY QUTPUT

Regression Statistics
Multiple R 0.802334
R Square 0.64374
Adjusted R Squ 0.609811
Standard Error  2.042699

SUMMARY OUTPUT

Regression Statistics

Multiple R 0802334
R Square 064374
Adjusted R Squ 0.609811
Standard Error  2.042699

Observations 24 Observations 24
ANOWVA ANOVA
df S8 MS F Sig. F df SS MS F Sig. F

Regression 2 168.3333 79.16667 18.9729 1.97E-05 Regression 2 168.3333 79.16667 18.9729 1.97E-05
Residual 21 B7.625 4172619 Residual 21 B7.625 4172619
Total 23 245.9583 Total 23 245 9583

Goefficientsfandard Em__ t Stat P-value Coefficientstandard Em_ t Stat P-value
Intercept 22 875 0722203 31.67391 3.26E-19 Intercept 25375 0722203 3513554 3.B4E-20
Pill 25 1021349 2447742 0023252 Shot -6.25 1.021349 -6.11935 4 51E-06
Shot -3.75 1.021349 -3.67161 0.001421 Lig -2.6 1021349 -2.44774 0023252

Any one of the three outputs will provide the same results. All three of the outputs give the same
Summary Output, the same ANOVA output, and the same estimates for time to relief (with a little
simplification of the equation).

Signals that “you goofed.” If you were to include a Dummy Variable for all three methods of
administration, you would receive the same #NUM! in one of the rows that we saw in the previous

example.
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A less obvious (but more serious) way to “goof” is when your output will not give you any clear signal
that you have made an error. Look at the output from running the regression procedure twice using
different codes for Method. Both use the exact same “raw” data. For the output on the left, method of
administration of the drug was coded 1 for pill, 2 for liquid, and 3 for shot. For the output on the right,
method of administration of the drug was coded 2 for pill, 1 for liquid, and 3 for shot. Excel had no way
to know Method represented categorical data (Nominal scale data); so Excel “crunched” the numbers as
though they represented measurements (Interval or Ratio scale data).

SUMMARY OUTPUT NOTE: This is a WRONG way SUMMARY OUTPUT NOTE: This is a WRONG way
to analysis this problem. i — to analysis this problem.
Regressian Statistics Method is a qualitative Regression Stafistics Method is a qualitative
Multiple R 0.797038 variable with 3 levels. Multiple R 0.318815 variable with 3 levels.
R Square 0.63527 Coding R Square 0.101643 Coding
Adjusted R Squ 0.618692 Pill = 1 Adjusted R Squ 0.060809 Pill = 2
Standard Error 2.01932 Liquid = 2 Standard Error  3.169158 Liquid =1
Observations 24 Shot =3 Observations 24 Shot =3
ANOVA ANOVA
df SS M3 F Sig. F df SS MS F Sig. F
Regression 1 156.25 15625 38.31863 3.13E-06 Regression 1 25 25 2489157 0.128905
Residual 22 89.70833 4.077652 Residual 22 2209583 10.04356
Total 23 2459583 Total 23 245 9583
Coefficientstandard Err_t Stat ~ P-value Coefficientstandard Em_ t Stat P-value
Intercept 28.70833 1.090557 26.32446 3.99E-18 Intercept 19 95833 1.711541 1166103 6.88E-11
Method -3.125  0.50483 6.1902 3.13E-06 Method 1.25 0792289 1577706 0.128905

Based on the output on the left (and the p value of 3.13 x 10°®), we would conclude that we have sufficient
evidence to say that the method of administration of the drug can be used to predict time to relief. Based
on the output on the right (and the p value of 1.28905), we would conclude that we do not have sufficient
evidence to say that the method of administration of the drug can be used to predict time to relief.

Also as seen in the table that follows, if you used the regression equation from the output for each
approach to coding, you would obtain different estimates for the expected time needed for the drug to be
effective. And you would reach a different conclusion about which method of administration would be
the fastest to provide relief!

Output on left Output on right
Regression | Time(hat) = 28.70833 — Time(hat) = 19.95833 +
equation 3.125Method 1.25Method
Estimate Time(hat) = 28.70833 -3.125(1) Time(hat) = 19.95833 + 1.25(2)
for pill = 25.58333 = 22.45833
Estimate Time(hat) = 28.70833 -3.125(2) Time(hat) = 19.95833 + 1.25(1)
for liquid =22.48533 =21.20833
Estimate Time(hat) = 28.70833 -3.125(3) Time(hat) = 19.95833 + 1.25(3)
for shot =19.33333 = 23.70833

The same raw data should produce the same conclusions—in terms of whether a variable is significant, in
terms of predicted outcomes, and in terms of relative rankings of the levels of the qualitative variable!
The outcome obtained should not be determined by the arbitrary choice of values assigned to a qualitative

variable.

Example 3 (Where the independent variables include one quantitative variable and one qualitative

variable with more than two possible outcomes) An extension of the previous situation where we were
predicting Time to relief: In this case, someone has suggested that we should consider age and the
method of administration of the drug when predicting time to relief.
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Like before, we will need to recognize that method of administration of the drug is qualitative and that we
need two Dummy Variables to represent the three methods of administration. This time we need to add
age to the model statement. Therefore, we can write the model statement as:

Time = o + B1Age + B,Pill + BsLiq + ¢

Note: The order that the terms appear in the model statement is not important. Also, the terms By, B1, B2
... are representative of the value of the coefficient in the given model (and should not be assumed as
“tied” to a specific variable or value across different models).

In order to obtain regression output, we will need a column of data for Time, one for Age, one for Pill and
one for Lig. The illustration below shows Liq and Pill moved to columns G and H and the data for Age
copied into column F so that the X variables are listed in the same order as the model statement. If you
keep Lig and Pill in columns F and G and copy Age into column H, you will obtain the same results as
the output in the illustrations here—the only difference will be the order of the rows in the coefficient
section.

E F G H Regression L ? &J
Time Age Li Fill Input
22 21 ? 0 Input ¥ Range: SES1:8E425 E|
25 36 1 0 Input ¥ Range: &F§1:5HS25 B
20 31 1 0 | Labels Constantis Zero
25 20 1 0 ;onﬁdence Level: ] %% B
25 45 0 1
24 40 U 1 Output options
23 25 0 1 @ Qutput Range: SME23 2.5
25 32 0 1 New Worksheet Ply:
19 37 0 0 Mew Workboak
Residuals
17 60 0 0 Residuals
21 25 ] ] Standardized Residuals
20 33 ] 0 Mormal Probability
24 20 1 0 Normal Prabability Plots
23 35 1 0

Clicking OK will produce the following output. Be careful when interpreting the results. Age does
represent a quantitati ve variable, but you must remember that Lig and Pill together represent the
qualitative variable Method of Administration.
SUMMARY QUTPUT

Regression Statistics
Multiple R 0.802663
R Square 0644268
Adjusted R Squ 0.590908
Standard Error 2.091594

Obsenvations 24
ANOVA

df 88 MS F Sig. F
Regression 3 158 4631 52.82102 12.07403 9.87E-05
Residual 20 87.49527 4.374764
Total 23 245 9583

Coefficientstandard Err t Stat P-value

Intercept 15.89044 1549934 121879 1.03E-10
Age 0.006034 0.03503% 0.172202 0.865009
Lig 3.768856 1.051513 3.58422 0.001855
Pill 6.254525 1.046127 5978744 T7.59E-06

Kim I. Melton, Ph.D. University of North Georgia, Dahlonega, GA 30597



Signal that you “goofed”: If you see the #NUM! in the coefficient section...you goofed. Also, if your
qualitative variable has more than two levels (i.e., at least three different outcomes), using a single
guantitative variable is a serious mistake that will not provide signals on the output that you goofed

Example 4 (Where the independent variables include quantitative and qualitative variables in some
combination): Using the predicting weights example [“Weight” Worksheet accessed at the lower left of
the same file.]

In this example we will consider the theory, “If we already know a person’s height and gender, we should
not need to consider their major when estimating weight. In this case we have two qualitative variables—
gender and major. You may say, “Why do | need to worry about major since the theory says that we do
not need to consider major?” Remember, theories are people ideas about what they believe—not all
theories are correct. To see if knowing someone’s major is not important, we need to consider the
possibility that major is important. Therefore, we put major into the model ...and hope that we do not
find sufficient evidence to keep it there!

We have already created a Dummy Variable for gender. Since there were only two levels (Male and
Female), we created one Dummy Variable. We will continue to use the GenderF that we created before.

We need to create Dummy Variables to represent a student’s major. To do this we need to know what the
possible outcomes were (or actually, we need to know how many different levels of the variable are
represented in our data set). When the data were collected students responded to the question about major
with five possible answers (Accounting, Finance, Management, Marketing, or Other). The data set does
include some students from each group. Since there are five levels for the “Major” qualitative variable,
we will need four Dummy Variables. We can define the following four Dummy Variables:

Acct = 1 for Accounting majors and 0 for all others

Finc = 1 for Finance majors and O for all others

Mgmt = 1 for Management majors and O for all others

Mktg = 1 for Marketing majors and O for all others
Therefore, if a student has a 0 in each of these four columns, they responded as “Other.”

With this, we have enough to write our model statement to include height, gender, and major as predictors
of weight: Weight = 3, + B;Height + B,GenderF + BsAcct + B4Finc + BsMgmt + BMktg + ¢

We need to be careful when we use the IF statement to populate columns J, K, L, and M since the majors
were entered in column E as Acc, Fin, Man, Mark, and Other. As we create the first data entry in each of
these columns, our comparison statement will need to use the variable names as coded in column E. For

example, the function in cell J2 will be =IF(E2="Acc”,1,0) and cell K2 will be =IF(E2="Fin”,1,0).

E_| fe| =IF[E2="Acc" 1.0)
Major G _ H | I J K L M
Other Weight Height GenderF Acct Finc Mgmit Ikt
Man 140 B5 1 0 0 0 0
Man 125 64 1 0 0 0 0
Man 115 63 1 0 0 1 0
Man 190 73 0 0 0 1 0
Other 125 64 1 0 0 1 0
Other 250 76 0 0 0 1 0
M’:a': 125 61 1 0 0 0 0
Ao 185 66 0 0 0 0 0
Other 200 14| 0 0 1 0 0
Man 155 73 0 0 0 1 0
Fin 100 65 1 1 0 0 0
Mark 175 73 0 0 0 0 0
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Once the data are entered, obtaining the output becomes routine. Look at the model statement to see that
Y is Weight and that the Xs include Height, GenderF, Acct, Finc, Mgmt, and Mktg. Select the data in the
regression dialogue box to match this, and click OK to get the following output.
SUMMARY QUTPUT

Regression Statistics
Multiple R 0.83709
R Sqguare 0.70072
Adjusted R Squ 0.638799
Standard Error 22 33068

Observations 36
ANOVA

df 55 MS F Sig. F
Regression 6 33858.62 5643.086 11.31651 1.68E-06
Residual 29 1446112 498 6594
Total 35 45319 64

Coefficientstandard Err  t Stat P-value

Intercept -31.1666 99.23415 -0.31407 0.755715
Height 3.110444 1.381684 2.251198 0.032122
GenderF -41.7464 13.87516 -3.00872 0.005381
Acct -2.4581 1177758 -0.20871 0.836133
Finc -20.201 14.80387 -1.36458 0.182882
Mgmt -7.09388 10.73486 -0.66083 0.513%4
Mktg -13.7122 13.62509 -1.00639 0.32255

Again, be careful. All four of the variables related to major must be considered together since they are
part of the same qualitative variable that has five possible outcomes. You cannot use the p values in the
rows for these four Dummy Variables to draw conclusions about if major should be in the model.
Interpretation of this output will be addressed in class.
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