Coloring k-trees with forbidden monochrome or rainbow triangles

Julian Allagan & Vitaly Voloshin

Department of Mathematics,
University of North Georgia, Watkinsville, Georgia
email: julian.allagan@ung.edu

&

Department of Mathematics and Geomatics,
Troy University, Troy, Alabama
email: vvoloshin@troy.edu

Abstract

An (\mathcal{H}, H)-good coloring is the coloring of the edges of a (hyper)graph \mathcal{H} such that no subgraph $H \subseteq \mathcal{H}$ is monochrome or rainbow. Similarly, we define an (\mathcal{H}, H)-proper coloring being the coloring of the vertices of \mathcal{H} with forbidden monochromatic and rainbow copies of H. An (\mathcal{H}, K_i)-good coloring is also known as a mixed Ramsey coloring when $\mathcal{H} = K_n$ is a complete graph, and an (\mathcal{H}, K_i)-proper coloring is a mixed hypergraph coloring of a t-uniform hypergraph \mathcal{H}. We highlight these two related theories by finding the number of (T_{nk}, K_3)-good and proper colorings for some k-trees, T_{nk} with $k \geq 2$. Further, a partition of an edge/vertex set into i nonempty classes is called feasible if it is induced by a good/proper coloring using i colors. If r_i is the number of feasible partitions for $1 \leq i \leq n$, then the vector (r_1, \ldots, r_n) is called the chromatic spectrum. We investigate and compare the exact values in the chromatic spectrum for some 2-trees, given (T_{2n}^n, K_3)-good versus (T_{2n}^n, K_3)-proper colorings. In particular, we found that when G is a fan, r_2 follows a Fibonacci recurrence.

Keywords: chromatic spectrum, Stirling numbers, mixed hypergraphs, k-trees.

1 Preliminaries

It is customary to define a hypergraph \mathcal{H} to be the ordered pair (X, \mathcal{E}), where X is a finite set of vertices with order $|X| = n$ and \mathcal{E} is a collection of nonempty subsets of X, called (hyper)edges. \mathcal{H} is said to be linear (otherwise it is nonlinear) if $E_1 \cap E_2$ is either empty or a singleton, for any pair of hyperedges. The number of vertices contained in E of \mathcal{E}, denoted $|E|$, is the size of E. When $|E| = r$, \mathcal{H} is said to be r-uniform and a 2-uniform hypergraph.
$H = G$ is a graph. For more basic definitions of graphs and hypergraphs, we recommend [17].

Consider the mapping $c : A \to \{1, 2, \ldots, \lambda\}$ being a λ-coloring of the elements of A. A subset $B \subseteq A$ is said to be monochrome if all of its elements share the same color and B is rainbow if all of its elements have distinct colors. Let H be a subgraph of a graph G. An edge coloring of G is called $(G; H)$-good if it admits no monochromatic copy of H and no rainbow copy of H. Likewise, a $(G; H)$-proper coloring is the coloring of the vertices of G such that no copy of H is monochrome or rainbow. Figure 1(A) is an example of a $(G; K_3)$-proper coloring while Figure 1(B) shows a $(G; K_3)$-good coloring.

Axenovich et al.[2] have referred to (K_n, K_3)-good coloring as mixed-Ramsey coloring, a hybrid of classical Ramsey and anti-Ramsey colorings [2, 8, 14] and the minumum and maximum numbers of colors used in a (K_n, K_3)-good coloring have been the subject of extensive research in [2, 3], for instance. Further, in mixed hypergraph colorings [16], a hypergraph \mathcal{H} that admits an $(\mathcal{H}; H)$-proper coloring is called a bihypergraph when $H = K_t$, the complement of a complete graph on $t \geq 3$ vertices. We note here that, mixed hypergraphs are often used to encode partitioning constraints, and recently bihypergraphs have appeared in communication models for cyber security [11]. Although this paper focuses on graphs, it is worth noting that the results concern some linear and nonlinear bihypergraphs as well.

A partition of an edge/vertex set into i nonempty classes is called feasible if it is induced by a good/proper coloring using i colors. If r_i is the number of feasible partitions for each $1 \leq i \leq n$, then the vector (r_1, \ldots, r_n) is called the chromatic spectrum. The chromatic spectrum of mixed hypergraphs has been well studied by several researchers such as Král and Tuza [5, 6, 12, 13]. Here, we found the values in the chromatic spectrum for any $(G; H)$-good or $(G; H)$-proper colorings when G is some non-isomorphic 2-trees, which are triangulated graphs, and H is a triangle. A comparative analysis of these values is presented in our effort to establish some bounds. In the process, we found that when G is a fan, r_2 follows a shifted Fibonacci recurrence. If we denote the falling factorial by $\lambda^i = \lambda(\lambda - 1)(\lambda - 2) \ldots (\lambda - i + 1)$, then the (chromatic) polynomial $P(G; H, \lambda) = P(G; H) = \sum_{i=1}^{n} r_i \lambda^i$, counts the number of colorings given some constraint on H, using at most λ colors. This polynomial is commonly known in the case of vertex colorings of graphs with a forbidden monochrome subgraph $H \in \{K_2, K_t\}$ [4, 7, 15]. In this paper, we also presented this polynomial for k-trees with forbidden monochrome or rainbow K_t for all $t \geq 3$. Here, the Stirling number of the second kind is denoted by $\left\{ n \atop k \right\}$; it counts the number of partitions of a set of n elements into k nonempty subsets. See Table 4 for some of its values. These notations and other combinatorial identities can be found in [10]. In Appendix, we present some arrays of the values of the parameters involved in this article; the zero entries are omitted in each table.

2 Chromatic polynomial of some k-trees

As a generalization of a tree, a k-tree is a graph which arises from a k-clique by 0 or more iterations of adding n new vertices, each joined to a k-clique in the old graph; This process
generates several non-isomorphic \(k \)-trees. Figure 1 shows two non-isomorphic 2-trees on 6 vertices. \(K \)-trees, when \(k \geq 2 \), are shown to be useful in constructing reliable network in [9]. Here, we denote by \(T^n_k \), a \(k \)-tree on \(n + k \) vertices which is obtained from a \(k \)-clique \(S \), by repeatedly adding \(n \) new vertices and making them adjacent to all the vertices of \(S \). When \(k = 2 \), this particular 2-tree is also known as an \((n+1) \)-bridge \(\theta(1, 2, \ldots, 2) \). See Figure 1(B) when \(n = 4 \).

\[\begin{align*}
\text{(A) Fan graph, } F^4 \\
\text{(B) 5-bridge graph, } T^4_2
\end{align*} \]

Figure 1: Two non-isomorphic 2-trees with a unique \((F^4; K_3)\)-proper 4-coloring and a unique \((T^4_2; K_3)\)-good 5-coloring

Theorem 2.1. The number of \((T^n_k; K_{k+1})\)-good colorings of a \(k \)-tree on \(n + 2 \) vertices is
\[
P(T^n_k; K_{k+1}) = \lambda (\lambda^k - 1)^n + \lambda \binom{k}{2}(\lambda^k - (\lambda - \binom{k}{2})^n + (\lambda^k - \lambda^k - \lambda)\lambda^n \\
\]

Proof. Given any coloring of \(T^n_k \), one of the following is true:

(i) \(S \) is monochromatic giving \(\lambda \) colorings. For each such coloring, there are \(\lambda^k - 1 \) ways to color the remaining \(k \) edges, that arise from each of the \(n \) vertices added, giving the first term.

(ii) \(S \) is rainbow giving \(\lambda |S| \) colorings. For each such coloring, there are \(\lambda^k - (\lambda - |S|)^k \) ways to color the remaining \(k \) edges of each of the \(n(k+1) \) cliques, giving the second term.

(iii) \(S \) is neither monochromatic nor rainbow giving \(\lambda |S| - \lambda |S| - \lambda \) colorings. For each such coloring, there are \(\lambda^k \) ways to color the remaining edges of each added vertex, giving the last term. The result follows from the fact that \(|S| = \binom{k}{2} \).

Using a similar argument as in the proof of Theorem 2.1 when \(|S| = k \), gives

Theorem 2.2. The number of \((T^n_k; K_{k+1})\)-proper colorings of a \(k \)-tree on \(n + 2 \) vertices is given by
\[
P(T^n_k; K_{k+1}) = \lambda (\lambda - 1)^n + \lambda^k k^n + (\lambda^k - \lambda^k - \lambda)\lambda^n \\
\]
Remark 1: When \(k = 2 \), observe from the proof of Theorem 2.1 that the number of \((T_{n}^{2}; K_{3}) \)-good colorings are identical for non-isomorphic 2-trees. However, in the next section, we show that this is not the case for \((T_{n}^{2}; K_{3}) \)-proper colorings.

3 Chromatic spectra of (monochrome and rainbow)-triangle free 2-trees

Here, we find and compare the values in the chromatic spectrum of some 2-trees. The next proposition is instrumental in expressing several formulas in the previous section into a falling factorial form, giving the chromatic spectral values.

Proposition 3.1. The equality

\[
\lambda(\lambda - 1)^{n} = \sum_{k=2}^{n+1} \left[\sum_{s=0}^{n-k+1} (-1)^{s} \binom{n}{s} \left\{ \binom{n+1-s}{k} \right\} \right] \lambda^{k}
\]

holds for all \(n \geq 1 \).

Proof. Clearly,

\[
\lambda(\lambda - 1)^{n} = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \lambda^{n+1-i}
\]

\[
= \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \left[\sum_{k=1}^{n+1-i} \left\{ \binom{n+1-i}{k} \right\} \lambda^{k} \right]
\]

\[
= \sum_{k=1}^{n+1} \left[\sum_{s=0}^{n-k+1} (-1)^{s} \binom{n}{s} \left\{ \binom{n+1-s}{k} \right\} \right] \lambda^{k}
\]

\[
= \sum_{s=0}^{n} (-1)^{s} \binom{n}{s} \left\{ \binom{n+1-s}{1} \right\} \lambda^{1}
\]

\[
+ \sum_{k=2}^{n+1} \left[\sum_{s=0}^{n-k+1} (-1)^{s} \binom{n}{s} \left\{ \binom{n+1-s}{k} \right\} \right] \lambda^{k}
\]

(1)

The result follows from the fact that (1) is equal to zero. □

Corollary 3.0.1. The chromatic spectrum of any \((T_{n}^{2}; K_{3}) \)-good coloring is \((r_{2}, \ldots, r_{k}, \ldots, r_{n+1}) \), where

\[
r_{k} = 3^{n-k+1} \left[\sum_{i=0}^{n-k+1} (-1)^{i} \binom{n}{i} \left\{ \binom{n+1-i}{k} \right\} \right], \quad k = 2, \ldots, n+1.
\]

Proof. The result follows from Theorem 2.1 when \(k = 2 \), and Proposition 3.1. □

Here is the analogous result in a \((G; K_{3}) \)-proper coloring when \(G \) is the \((n+1) \)-bridge graph \(\theta(1, 2, \ldots, 2) \) which was shown to be a 2-tree on \(n+2 \) vertices. For simplicity, let \(T_{2}^{\theta} = \theta(1, 2, \ldots, 2) \).
Corollary 3.0.2. The chromatic spectrum of any \((T_2^n; K_3)\)-proper coloring of a 2-tree on \(n + 2\) vertices is \((r'_2, \ldots, r'_k, \ldots, r'_{n+1})\), where

\[
r'_k = \begin{cases}
\sum_{i=0}^{n-k+1} (-1)^i \binom{n}{i} \binom{n+1-i}{k} & \text{if } k \geq 3 \\
2^n + 1 & \text{otherwise.}
\end{cases}
\]

Proof. From Theorem 2.2 (when \(k = 2\)), we have \(P(T_2^n; K_3) = \lambda(\lambda - 1)^n + 2^n \lambda^2\), to which we apply Proposition 3.1. Also, observe that from (2) when \(k = 2\),

\[
\sum_{i=0}^{n-1} (-1)^i \binom{n}{i} \binom{n+1-i}{2} = 1
\]

given the second statement.

Now, we take a closer look at another well-known 2-tree. Construct a graph \(G\) as follows: start with a triangle \(\{w_1, w_2, u_1\}\), and iteratively add \(n - 1\) new vertices, such that each additional vertex \(u_i\) is adjacent to the pair \(\{u_i, u_{i-1}\}\), for \(i = 3, \ldots, n + 1\), and \(u_2\) is adjacent to the pair \(\{u_1, w_2\}\). We denote \(G\) by \(F^n\), a fan on \(n + 2\) vertices and Figure 1(A) is an example when \(n = 4\). Further, from the construction, it is clear that \(F^n\) is also a 2-tree. Here, we color the vertices of \(F^n\), and recursively count the number of \((F^n; K_3)\)-proper colorings. To help illustrate this recursion, we present the next example.

Example 3.1. Chromatic spectrum of an \((F^4; K_3)\)-proper coloring

Consider the fan \(F^4\), obtained by iteratively adding \(n = 4\) vertices to a base edge \(\{w_1, w_2\}\) as shown in Figure 1(A). When \(n = 1\), it is clear that there are exactly \(2\lambda^2 + \lambda^2\) ways to color the vertices of the triangle \(\{w_1, w_2, u_1\}\) so that it is neither monochrome nor rainbow. The first and second terms count the cases when \((a)\) \(c(u_1) \neq c(u_2)\) and \((b)\) \(c(u_1) = c(u_2)\), respectively. When \(n = 2\), from \((a)\) it follows that for each such colorings, there are exactly two ways to color \(u_2\); either \(c(u_2) = c(u_1) \neq c(w_2)\) or \(c(u_2) = c(u_1) = c(w_2)\). Likewise from \((b)\), there are \(\lambda - 1\) ways to color \(u_2\) such that \(c(u_2) \neq c(u_1) = c(w_2)\). Together, we have

\[
P(F^2; K_3) = 2(2\lambda^2) + (\lambda - 1)\lambda^2 = \lambda^2[2 + (\lambda - 1)] + 2\lambda^2.
\]

As the terms in last expression of (3) are arranged so that the first term counts the case when \(c(u_1) \neq c(u_2)\) and the last term counts the case when \(c(u_1) = c(u_2)\), we can apply once again the same argument to the newly added vertex \(u_3\). Thus, we have

\[
P(F^3; K_3) = 2[\lambda^2(2 + (\lambda - 1))] + (\lambda - 1)[2\lambda^2] = \lambda^2[2 + 3(\lambda - 1)] + \lambda^2[2 + (\lambda - 1)].
\]

Similarly, by adding \(u_4\) to \(F^3\), we obtain from (4),

\[
P(F^4; K_3) = \lambda^2[2 + 5(\lambda - 1) + (\lambda - 1)^2] + \lambda^2[2 + 3(\lambda - 1)],
\]

5
Table 1 in Appendix shows some of the chromatic spectral values given a \((T_2^n; K_3)\)-good coloring, a \((T_2^n; K_3)\)-proper coloring and an \((F^n; K_3)\)-proper coloring when \(n = 1, \ldots, 6\). These values can be derived from Corollary 3.0.1, Corollary 3.0.2, and Corollary 3.1.1 respectively, for each coloring condition.
Theorem 3.1. The number of \((F^n; K_3)\)-proper colorings is

\[
P(F^n; K_3) = \sum_{0 \leq r \leq \left\lfloor \frac{n}{2} \right\rfloor} \phi(n, r) \lambda(\lambda - 1)^{r+1},
\]

where

\[
\phi(n, r) = \begin{cases}
 a_n + a_n\left\lceil \frac{n+r}{2} \right\rceil & \text{if } r < \frac{n}{2} \\
 a_n \frac{n}{2} & \text{otherwise}
\end{cases}
\]

and the values of \(a_{i,j}\) satisfying, for \(0 \leq j \leq i \leq n\),

(i) \(a_{i,0} = 2\) and \(a_{1,1} = 1\)

(ii) for all even \(i \geq 2\), \(a_{i,j} = \begin{cases}
 a_{i-1,j} + a_{i-1,j+\left\lceil \frac{i+1}{2} \right\rceil} & ; 1 \leq j \leq \left\lceil \frac{i-1}{2} \right\rceil \\
 a_{i-1,j-\left\lceil \frac{i+1}{2} \right\rceil} & ; \left\lceil \frac{i+1}{2} \right\rceil \leq j \leq i
\end{cases}\)

(iii) for all odd \(i \geq 3\), \(a_{i,j} = \begin{cases}
 a_{i-1,j} + a_{i-1,j+\left\lceil \frac{i+1}{2} \right\rceil} & ; 1 \leq j \leq \left\lceil \frac{i-1}{2} \right\rceil \\
 a_{i-1,j-\left\lfloor \frac{i}{2} \right\rfloor} & ; \left\lfloor \frac{i}{2} \right\rfloor \leq j \leq i
\end{cases}\)

Proof. When \(n = 1\), it follows that \(P(F^1; K_3) = \phi(1,0)\lambda(\lambda - 1)^1 = [a_{1,0} + a_{1,1}]\lambda(\lambda - 1)^1 = 3\lambda(\lambda - 1)\), since \(a_{1,0} = 2\) and \(a_{1,1} = 1\) by condition (i). For \(n \geq 2\), at each iteration, we separate the cases when \(c(u_1) \neq c(u_k)\) from when \(c(u_1) = c(u_k)\). Further, we rearrange the terms of the resulting expression of \(P(F^k; K_3)\) so that the first counts the colorings \(c(u_1) \neq c(u_k)\), and the last counts the colorings \(c(u_1) = c(u_k)\) for \(k = 1, \ldots, n\). Hence, for \(n \geq 1\),

\[
P(F^n; K_3) = \lambda^2 \left(\sum_{1 \leq k \leq \left\lceil \frac{n+1}{2} \right\rceil} a_{n,k-1}(\lambda - 1)^{k-1} \right) + \lambda^2 \left(\sum_{1+\left\lceil \frac{n+1}{2} \right\rceil \leq k \leq n} a_{n,k-1}(\lambda - 1)^{k-\left\lceil \frac{n+1}{2} \right\rceil-1} \right)
\]

\[
= \sum_{1 \leq k \leq \left\lceil \frac{n+1}{2} \right\rceil} [a_{n,k-1} + a_{n,\left\lceil \frac{n+1}{2} \right\rceil+k-1}]\lambda(\lambda - 1)^{k+1},
\]

where the coefficients \(a_{i,j}\) are obtained recursively from items (i) – (iii). By letting \(a_{i,j} = 0\) when \(i < j\), it follows that

\[
P(F^n; K_3) = \sum_{0 \leq r \leq \left\lfloor \frac{n}{2} \right\rfloor} \phi(n, r) \lambda(\lambda - 1)^{r+1},
\]

where

\[
\phi(n, r) = \begin{cases}
 a_n + a_n\left\lceil \frac{n+r}{2} \right\rceil & \text{if } r < \frac{n}{2} \\
 a_n \frac{n}{2} & \text{otherwise}
\end{cases}
\]

\[
\boxed{\text{Proof end.}}
\]
Observation 1: The previous result can be reinterpreted as follows: Let $a_{0,0} = 2$ and define an $(n + 1) \times (n + 1)$ matrix A whose entries are the coefficients $a_{i,j}$ for $0 \leq i, j \leq n$. It follows that (10) is equivalent to the equation $P = \lambda A \cdot B$, where

$$P = \begin{bmatrix} P(F^0; K_3) + \lambda(\lambda - 2) \\ P(F^1; K_3) \\ \vdots \\ P(F^n; K_3) \end{bmatrix}, \quad A = \begin{bmatrix} a_{0,0} \\ a_{1,0} \\ \vdots \\ a_{n,0} \end{bmatrix} \begin{bmatrix} a_{1,1} \\ \vdots \\ a_{n,1} \end{bmatrix} \ldots \begin{bmatrix} \ldots \\ a_{n,n} \end{bmatrix}$$

$$B = [B_1|B_2]^T \text{ with } B_1 = [(\lambda - 1)^1 \ldots (\lambda - 1)^{\lceil \frac{n+1}{2} \rceil}] \text{ and } B_2 = [(\lambda - 1)^1 \ldots (\lambda - 1)^{\lfloor \frac{n+1}{2} \rfloor}]$$

When $n = 10$, we present the entries of the lower triangular matrix A in Table 2 to help in the verification of the formula. The matrix A has several interesting properties some of which we discuss in the next observation. For now, it is easy to see that its determinant

$$\det(A) = \prod_{i=0}^{n} a_{i,i} = 2(\lceil \frac{n+1}{2} \rceil)!$$

and its characteristic polynomial is given by

$$(-1)^{n+1}(x - 1)^{\lceil \frac{n}{2} \rceil}(x - 2)^2(x - 3) \ldots (x - \lceil \frac{n+1}{2} \rceil)$$

Corollary 3.1.1. The values in the chromatic spectrum of any $(F^n; K_3)$-proper coloring are given by $r''_k = \sum_{k-2 \leq r \leq \lceil \frac{n}{2} \rceil} \phi(n, r) \sum_{0 \leq i \leq r-k+2} (-1)^i \binom{r+1}{i} \binom{r+2-i}{k}$, for each $k = 2, \ldots, \lceil \frac{n+1}{2} \rceil + 1$, with

$$\phi(n, r) = \begin{cases} a_{n,r} + a_{n,\lceil \frac{n+1}{2} \rceil} \quad & \text{if } r < \lceil \frac{n}{2} \rceil \\ a_{n,\lceil \frac{n}{2} \rceil} & \text{otherwise} \end{cases}$$

Proof. For each $r = 0, \ldots, \lfloor \frac{n}{2} \rfloor$, we apply Proposition 3.1 to $P(F^n; K_3)$, giving

$$P(F^n; K_3) = \phi(n, 0)[(-1)^0 \binom{1}{0} \binom{2}{2}]\lambda^2 + \phi(n, 1)[(-1)^0 \binom{2}{0} \binom{3}{2} + (-1)^1 \binom{2}{1} \binom{2}{2}]\lambda^2 + \phi(n, 1)[-(-1)^0 \binom{2}{0} \binom{3}{3} \lambda^3 + \phi(n, 1)[(-1)^0 \binom{2}{0} \binom{3}{3}]\lambda^3 + \phi(n, 2)[(-1)^0 \binom{3}{0} \binom{4}{2} + (-1)^1 \binom{3}{1} \binom{3}{2} + (-1)^2 \binom{3}{2} \binom{2}{2}]\lambda^3 + \phi(n, 2)[-(-1)^0 \binom{3}{0} \binom{4}{4} \lambda^3 + (-1)^1 \binom{3}{1} \binom{4}{4} \lambda^3]$$
\[+ \phi(n, 3)[(-1)^0 \binom{3}{0} \binom{4}{4}] \lambda^4 \]

\[+ \phi(n, \lfloor \frac{n}{2} \rfloor)[(-1)^0 \binom{\lfloor \frac{n}{2} + 1 \rfloor}{0} \binom{\lfloor \frac{n + 1}{2} \rfloor + 1}{\lfloor \frac{n + 1}{2} \rfloor + 1}] \lambda^{\lfloor \frac{n + 1}{2} \rfloor + 1}. \tag{12} \]

Therefore,

\[P(F^n; K_3) = \sum_{k=2}^{\lfloor \frac{n}{2} \rfloor + 1} \left(\sum_{r=k-2}^{\lfloor \frac{n}{2} \rfloor} \phi(n, r) \left[\sum_{0 \leq i \leq r-k+2} (-1)^i \binom{r + 1}{i} \left\{ \binom{r + 2 - i}{k} \right\} \right] \lambda^k, \tag{13} \]

giving the result.

\[\square \]

Observation 2: When \(k = \lfloor \frac{n+1}{2} \rfloor + 1 \), the last term of (13) is

\[\phi(n, \lfloor \frac{n}{2} \rfloor) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 3 + \frac{n-1}{2} & \text{otherwise} \end{cases} \]

Also, it is worth noting that when \(k = 2 \),

\[\sum_{r=0}^{\lfloor \frac{n}{2} \rfloor} \phi(n, r) \left[\sum_{0 \leq i \leq r} (-1)^i \binom{r + 1}{i} \binom{r + 2 - i}{2} \right] = \sum_{r=0}^{\lfloor \frac{n}{2} \rfloor} \phi(n, r); \text{this proceeds from the simple fact that} \sum_{i=0}^{n} (-1)^i \binom{n}{i} \binom{n+1-i}{2} = 1, \text{for all } n. \]

Further, observe that if we define \(b_i = \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} \phi(n, j) \) for each \(i \leq n \), it follows that \(b_i = \sum_j a_{i,j} \) and the sequence \(\{b_n\} \) satisfies the shifted Fibonacci recurrence given by \(b_0 = 2, b_1 = 3 \) and \(b_n = b_{n-1} + b_{n-2} \), for \(n \geq 2 \). From this observation, we determine the generating function in the next proposition.

Proposition 3.2. The number of partitions of the \(n+2 \) vertices of a fan into 2 nonempty classes such that no triangle is monochrome or rainbow is given by

\[b_n = \frac{1}{\sqrt{5}}[(2 + \sqrt{5})\alpha^n - (2 - \sqrt{5})\beta^n], \text{where } \alpha = \frac{1 + \sqrt{5}}{2} \text{ and } \beta = \frac{1 - \sqrt{5}}{2} \]
Proof. Let \(b(x) = \sum_{n=0}^{\infty} b_n x^n \) such that \(b_0 = 2 \), \(b_1 = 3 \) and \(b_n = b_{n-1} + b_{n-2} \). It follows that

\[
\begin{align*}
\text{b}(x) &= 2 + 3x + \sum_{n=2}^{\infty} b_n x^n \\
&= 2 + 3x + x \sum_{k=1}^{\infty} b_k x^k + x^2 \sum_{k=0}^{\infty} b_k x^k \\
&= 2 + 3x + x (\sum_{k=0}^{\infty} b_k x^k - 2) + x^2 \sum_{k=0}^{\infty} b_k x^k \\
&= 2 + x + xb(x) + x^2 b(x).
\end{align*}
\]

This implies that \(b(x) = \frac{2 + x}{1 - x - x^2} = \frac{2 + x}{(x + \alpha)(x + \beta)} \), with \(\alpha = \frac{1 + \sqrt{5}}{2} \) and \(\beta = \frac{1 - \sqrt{5}}{2} \).

Using a partial fraction decomposition, and subsequently the power series, we obtain

\[
\begin{align*}
\text{b}(x) &= \frac{1}{\sqrt{5}} \left[\frac{\beta - 2}{x + \beta} - \frac{\alpha - 2}{x + \alpha} \right] \\
&= \frac{1}{\sqrt{5}} \left[\frac{\beta - 2}{\beta} (\sum_{n=0}^{\infty} \alpha^n x^n) - \frac{\alpha - 2}{\alpha} (\sum_{n=0}^{\infty} \beta^n x^n) \right] \\
&= \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} \left[\frac{\beta - 2}{\beta} \alpha^n - \frac{\alpha - 2}{\alpha} \beta^n \right] x^n,
\end{align*}
\]

giving that \(b_n = \frac{1}{\sqrt{5}} \left[\frac{\beta - 2}{\beta} \alpha^n - \frac{\alpha - 2}{\alpha} \beta^n \right] \). The result follows, after a simplification.

\(\square \)

In summary, the extreme chromatic spectral values given the aforementioned colorings are clear; the lower values are, \(r_2 = 3^n \), \(r'_2 = 2^n + 1 \), \(r''_2 = b(x) \) where

\[
b(x) = \frac{1}{\sqrt{5}} \left[\frac{\beta - 2}{\beta} \alpha^n - \frac{\alpha - 2}{\alpha} \beta^n \right].
\]

Also, for all \(n > 1 \), the upper values are also shown to be \(r_{n+1} = 3^n \), \(r''_{n+1} = 1 \), and \(r'''_{n+1} = \begin{cases} 1 & \text{if } n \text{ even} \\ 3 + \frac{n-1}{2} & \text{otherwise} \end{cases} \)

4 Conclusion and future work

To the best of our knowledge, the problem of finding the exact chromatic spectral values in a \((K_n, K_t)\)-good coloring remains open for all \(t \geq 3 \) and larger values of \(n \); this particular problem which was originally by one of the authors has greatly inspired this research. When \(G \) is a 2-tree, the findings in Corollaries 3.0.1, 3.0.2, and 3.1.1 suggest the existence of
some constant $c < 1$, such that $r_k^* = cr_k$ where r_k and r_k^* are the corresponding values in the chromatic spectra of a $(G; K_3)$-proper and a $(G; K_3)$-good coloring, respectively. For instance, $c = (\frac{1}{3})^n$ when G is an $(n+1)$-bridge. Further work is needed to determine whether the values in the chromatic spectrum of a $(G; H)$-good coloring remain upper bounds for their counterparts in a $(G; H)$-proper coloring, given any other graph G and some subgraph H.

Also, the original definition of a $(G; H)$-proper coloring can be extended to include more than one subgraph. For instance, a $(G; H_1, \ldots, H_m)$-proper coloring is the coloring of the vertices of G such that no copy of (distinct) subgraphs H_i is monochrome or rainbow, for $i = 1, \ldots, m$. As such, when $G = \mathcal{H}$ and $H_i = \overline{K}_{t_i}$, \mathcal{H} is a non-uniform bihypergraph with hyperedges of size $t_i \geq 3$. Some related results concerning non-uniform bihypergraphs can be found in [1]. As a step in this direction for graphs, we propose the next lemma.

This lemma shows that the chromatic spectral values of any $(F^n; K_3, H)$-proper coloring are identical when $H \in \{K_{1,t}, C_4, P_3 \square P_2\}$, where $P_3 \square P_2$ is isomorphic to $\theta(1, 3, 3)$, and $K_{1,t}$ is a complete bipartite graph with parts sizes 1 and $t \geq 2$.

Lemma 4.1. Any (monochrome and rainbow)-triangle free proper coloring of a fan on $n+2$ vertices is an $(F^n; K_3, H)$-proper coloring for each $H \in \{K_{1,t}, C_4, P_3 \square P_2\}$, with $\lfloor \frac{n+1}{2} \rfloor \leq t \leq n+1$.

Proof. Let $S = \{w_1, w_2, u_3, \ldots, u_n\}$ denote the set of rim vertices and let $S_1 = \{w_1, w_2, \ldots, u_{2r}\}$, for each $1 \leq r \leq \lfloor \frac{n}{2} \rfloor$. Suppose $H = K_{1,t}$ and consider a coloring of F^n such that $c(u_1) = c(v_1)$ for each $v_1 \in S_1$. If F^n contains no monochrome and rainbow triangle, it must be that $c(u_1) \neq c(v_2)$ for each vertex $v_2 \in (S \setminus S_1)$. Pick any $v'_2 \notin S_1$, and by letting $S_1 \cup \{u_1, v'_2\}$ be the vertex set of the subgraph $K_{1,t} \subset F^n$, it is clear that $K_{1,t}$ is neither monochrome nor rainbow and the size of $S_1 \cup \{v'_2\}$ gives the lower bound of t. To obtain the upper bound of t, color each vertex $v \in S$ with the same color and let $c(u_1) \neq c(v)$ for each $v \in S$. This gives an $(F^n; K_3)$-proper coloring and it is also an $(F^n; K_3, K_{1,t})$-proper coloring, where the vertex set of $K_{1,t} \subset F^n$ is $S \cup \{u_1\}$.

Now we show that any $(F^n; K_3)$-proper coloring is an $(F^n; K_3, C_4)$-proper coloring. Since every cycle on 4 vertices $C_4 \subset F^n$ must include u_1, assume that $C_4 = \{u_1, v_1, v_2, v_3, u_1\}$, an ordered sequence of vertices. If the set $\{u_1, v_1, v_2, v_3\}$ is monochrome/rainbow, then $C_4 \subset F^n$ contains a monochrome/rainbow triangle, which is impossible. Hence C_4 is neither monochrome nor rainbow, giving an $(F^n; K_3, C_4)$-proper coloring.

For all $n \geq 5$, observe that $H = P_3 \square P_2 \subset F^n$, and the argument follows from the fact that $C_4 \subset P_3 \square P_2$. \hfill \Box

In conclusion, it is worth noting that future work can address the coloring of the vertices of a graph with either forbidden monochrome subgraphs or forbidden rainbow subgraphs (but not both). As a step in this direction, we present a simple case when coloring the elements of an n-set such that no t-subset is rainbow.

Corollary 4.0.2. The chromatic spectral values in the colorings of the vertices of a complete graph K_n such that no K_t is rainbow are given by $r_k = \{n\}_k$, for $k = 1, \ldots, t - 1$.

11
Note that these values also correspond to the chromatic spectral values of any complete t-uniform cohypergraph of order n; cohypergraphs are hypergraphs whose hyperedges are forbidden to be rainbow given any proper (vertex) coloring [16].

References

Appendix

<table>
<thead>
<tr>
<th></th>
<th>((T^n_2; K_3))-good</th>
<th>((T^n_2; K_3))-proper</th>
<th>((F^n; K_3))-proper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 1)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>(3^2(1,1))</td>
<td>(5,1)</td>
<td>(5,1)</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>(3^3(1,3,1))</td>
<td>(9,3,1)</td>
<td>(8,4)</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>(3^4(1,7,6,1))</td>
<td>(17,7,6,1)</td>
<td>(13,11,1)</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>(3^5(1,15,25,10,1))</td>
<td>(33,15,25,10,1)</td>
<td>(27,17,5)</td>
</tr>
<tr>
<td>(n = 6)</td>
<td>(3^6(1,31,90,65,15,1))</td>
<td>(65,31,90,65,15,1)</td>
<td>(37,62,7,1)</td>
</tr>
</tbody>
</table>

Table 1: chromatic spectral values of some \((G; K_3)\)-good colorings and some \((G; K_3)\)-proper colorings for \(n \leq 6 \)

<table>
<thead>
<tr>
<th>(n \backslash j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2</td>
<td>15</td>
<td>36</td>
<td>30</td>
<td>6</td>
<td>2</td>
<td>13</td>
<td>25</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2</td>
<td>17</td>
<td>49</td>
<td>55</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>36</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2</td>
<td>19</td>
<td>64</td>
<td>91</td>
<td>50</td>
<td>7</td>
<td>2</td>
<td>17</td>
<td>49</td>
<td>55</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2: Table of values of \(a_{i,j} \), which are the entries of the matrix \(A \) when \(n = 11 \)
Table 3: Table of values of $\phi(n, r)$ when $n = 11$

<table>
<thead>
<tr>
<th>$n \backslash r$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>20</td>
<td>25</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>24</td>
<td>41</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>28</td>
<td>61</td>
<td>44</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>32</td>
<td>85</td>
<td>85</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>36</td>
<td>113</td>
<td>146</td>
<td>70</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 4: Table of values of $\binom{n}{k}$ when $n = 11$

<table>
<thead>
<tr>
<th>$n \backslash k$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>31</td>
<td>90</td>
<td>65</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>63</td>
<td>301</td>
<td>350</td>
<td>140</td>
<td>21</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>127</td>
<td>966</td>
<td>1701</td>
<td>1050</td>
<td>266</td>
<td>28</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>255</td>
<td>3025</td>
<td>7770</td>
<td>6951</td>
<td>2646</td>
<td>462</td>
<td>36</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>511</td>
<td>9330</td>
<td>34105</td>
<td>42525</td>
<td>22827</td>
<td>5880</td>
<td>750</td>
<td>45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1023</td>
<td>2850</td>
<td>145750</td>
<td>246730</td>
<td>179487</td>
<td>63987</td>
<td>11880</td>
<td>1155</td>
<td>55</td>
<td>1</td>
</tr>
</tbody>
</table>