Instructor: Berhanu Kidane

Course: College Algebra Math 1111

Text Book: For this course we use the free e – book by Stitz and Zeager with link:

Tutorials and Practice Exercises
- http://www.mathwarehouse.com/algebra/
- http://www.ixl.com/math/precalculus
- http://www.ltcconline.net/greenl/java/index.html

For more free supportive educational resources consult the syllabus
4.1 Rational Functions

Objectives: By the end of this section students should be able to:
- Define a rational function and give example
- Identify vertical, horizontal and oblique asymptotes
- Find vertical Horizontal and oblique asymptotes
- Sketch graphs of rational functions
- Solve application problems

Rational Function and Asymptotes

Definition: A function \(f(x) = \frac{p(x)}{q(x)} \), where \(q(x) \neq 0 \), \(p(x) \) and \(q(x) \) are polynomials is called a rational function.

Definition: (Domain)
The Domain of a rational function \(f \) is set of all inputs \(x \) for which \(q(x) \neq 0 \).
That is Domain of \(f = \{x : q(x) \neq 0\} \)

Example 4.1.1: Page 301
Example: Find the domain of:

a) \(f(x) = \frac{x+1}{x^2-4} \)
b) \(f(x) = \frac{x}{x^2-2} \)
c) \(f(x) = 1/x \)

A simple Rational Function

Example 1: Graph the function \(f(x) = \frac{1}{x} \)
The function \(f \) is not defined at \(x = 0 \), so, the domain of \(f = \{x : x \neq 0\} \)

The following two tables show that when \(x \) is close to zero, \(|f(x)| \) gets large

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1</td>
<td>-10</td>
</tr>
<tr>
<td>-0.01</td>
<td>-100</td>
</tr>
<tr>
<td>-0.001</td>
<td>-1000</td>
</tr>
<tr>
<td>-0.0001</td>
<td>-10000</td>
</tr>
<tr>
<td>Approaches 0^-</td>
<td>Approaches to (-\infty)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>0.001</td>
<td>1000</td>
</tr>
<tr>
<td>0.0001</td>
<td>10000</td>
</tr>
<tr>
<td>Approaches 0^+</td>
<td>Approaches to (\infty)</td>
</tr>
</tbody>
</table>

We describe this behavior as follows
The first Table \(f(x) \rightarrow -\infty \) as \(x \rightarrow 0^- \); The second Table \(f(x) \rightarrow \infty \) as \(x \rightarrow 0^+ \)
The next two tables shows how $f(x)$ changes as $|x|$ becomes large

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>-100</td>
<td>100</td>
</tr>
<tr>
<td>-100000</td>
<td>100000</td>
</tr>
<tr>
<td>Approaches $-\infty$</td>
<td>Approaches ∞</td>
</tr>
</tbody>
</table>

The Tables shows that as $|x|$ becomes large, the value of $f(x)$ gets closer and closer to **zero**

That is:

$$f(x) \to 0 \text{ as } x \to -\infty \text{ and } f(x) \to 0 \text{ as } x \to -\infty$$

Using the information in these Tables and plotting few additional points, we obtain the graph of $y = 1/x$ as shown below

Example 2: Find the domain and sketch the graph using transformation properties on $f(x) = \frac{1}{x}$

a) $f(x) = \frac{2}{x-4}$ \hspace{1cm} **Answer D = $(-\infty, 4) \cup (4, \infty)$**

b) $y = \frac{x+1}{x-2}$

c) $y = \frac{1}{x+5}$
Example 3: In each of the following, which values of \(x \) may not be included in the domain? That is, which values are the singularities of the function? What is the domain of the function?

\(a) \quad y = \frac{1}{2x + 1} \)
\(b) \quad y = \frac{1}{x^2 - 16} \)
\(c) \quad f(x) = \frac{1}{x^2 + x - 6} \)

Asymptotes of Rational Functions

We consider three types of asymptotes: Vertical, Horizontal, and Oblique or Slant Asymptotes.

Arrow Notations:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \to a^-)</td>
<td>(x) approaches (a) from the left</td>
</tr>
<tr>
<td>(x \to a^+)</td>
<td>(x) approaches (a) from the right</td>
</tr>
<tr>
<td>(x \to -\infty)</td>
<td>(x) goes to negative infinity; (x) decreases without bound</td>
</tr>
<tr>
<td>(x \to \infty)</td>
<td>(x) goes to infinity; (x) increases without bound</td>
</tr>
</tbody>
</table>

Definition of Vertical and Horizontal Asymptotes

1. **Vertical Asymptote (VA)** is a vertical line; that is a line perpendicular to the \(x \)– axis.
 - The line \(x = a \) is a Vertical Asymptote of the function \(y = f(x) \) if \(y \) approaches \(\pm \infty \) as \(x \) approaches \(a \) from the right or from the left.
 - Using Arrow Notations:
 - The line \(x = a \) is a Vertical Asymptote of the graph of a function \(y = f(x) \) if as \(x \to a^- \) or as \(x \to a^+ \), either \(f(x) \to \infty \) or \(f(x) \to -\infty \).

2. **Horizontal Asymptote (HA)** is a horizontal line; that is a line parallel to the \(y \)– axis.
 - The line \(y = b \) is a Horizontal Asymptote of the function \(y = f(x) \) if \(y \) approaches \(b \) as \(x \) approaches \(\pm \infty \).
 - Using Arrow Notations:
 - The line \(y = b \) is a Horizontal Asymptote of the graph of a function \(y = f(x) \) if as \(x \to -\infty \) or as \(x \to \infty \), \(f(x) \to b \).
Example 4: Vertical and Horizontal Asymptotes for the graph of \(y = \frac{1}{x} \), see fig below

Question 1: Where do we always find a vertical asymptote of a graph? At a singularity

Question 2: What does the equation of a vertical line look like? \(x = A \text{ number} \)

Question 3: What does the equation of a horizontal line look like? \(y = A \text{ number} \)

Example 5: Each of the following graphs is a translation of the graph of \(y = \frac{1}{x} \).

a) \(y = \frac{1}{x - 3} \)

What is the HA and VA?
b) \(y = \frac{1}{x+2} \)

What is the HA and VA?

c) \(y = \frac{-1}{x+2} \) This is a reflection about the x-axis of graph b).

What is the HA and VA?

d) \(y = \frac{2x-5}{x-3} = \frac{1}{x-3} + 2 \)

What is the HA and VA?
Example 4.1.2: Page 306 vertical and horizontal asymptotes

Example 4.1.3: Page 307

Example 4.1.4: Page 309 List the horizontal asymptotes,

Example 5: Write the equation of the vertical and horizontal asymptote(s) of each of the following.

a) \(y = \frac{3x + 4}{x + 1} \)

b) \(y = \frac{1}{2x + 1} \)

c) \(y = \frac{1}{x^2 - 16} \)

d) \(f(x) = \frac{1}{x^2 + x - 6} \)

Oblique or Slant Asymptotes

3) Definition (Oblique or Slant Asymptote (OA))

When a linear asymptote is not parallel to the x- or y-axis, it is called an oblique asymptote or slant asymptote.

Using Arrow Notations

The line \(y = mx + b \) where \(m \neq 0 \) is called a slant or oblique asymptote of the graph of a function \(y = f(x) \) if as \(x \to \infty \) or as \(x \to -\infty \), \(f(x) \to mx + b \).

Example: Graph \(y = \frac{x^2 + 1}{x} \)

\[y = x + \frac{1}{x} \]

Blue line is \(y = x \), the OA

Question 4: What does the equation of an oblique line look like?
Ans. \(y = mx + b \)

Example 4.1.6: Page 312 Find the slant asymptotes

Example 6: Find the Oblique Asymptote: (Use long division to find the OA)

a) \(f(x) = \frac{2x^2 - 3x - 1}{x - 2} \)

b) \(f(x) = \frac{5x^3}{x^2 - 9} \)
Asymptotes Summary

Vertical Asymptote
First simplify the rational expression; then if \(a \) is a zero of the new denominator, then the line \(x = a \) is a vertical asymptote for the graph or the rational function.

Example 1: Find the vertical asymptotes:

a) \(f(x) = \frac{2}{x - 4} \)

b) \(f(x) = \frac{5x}{x^2 - 9} \)

c) \(f(x) = \frac{x^2 - 16}{x - 4} = \frac{(x-4)(x+4)}{x-4} = x + 4, \ x \neq 4 \)
 No vertical asymptote

Horizontal Asymptote
Let \(f(x) = \frac{p(x)}{q(x)} = \frac{a_nx^n + \ldots + a_0}{b_kx^k + \ldots + b_0} \), \(n = \) degree of numerator, \(k = \) degree of denominator.

Then:

<table>
<thead>
<tr>
<th>Condition on degrees</th>
<th>Asymptote</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n < k)</td>
<td>(y = 0) line is H.A.</td>
</tr>
<tr>
<td>(n = k)</td>
<td>(y = \frac{a_n}{b_k}) line is the H.A</td>
</tr>
</tbody>
</table>

Example 2: Find the HA

a) \(f(x) = \frac{2}{x - 4} \)

b) \(f(x) = \frac{2x^3 + 3x - 7}{3x^3 - 5x^2 + 3x} \)

Oblique (or Slant) Asymptote
Let \(f(x) = \frac{p(x)}{q(x)} = \frac{a_nx^n + \ldots + a_0}{b_kx^k + \ldots + b_0} \), \(n = \) degree of numerator, \(k = \) degree of denominator.

Then:

<table>
<thead>
<tr>
<th>Condition on degrees</th>
<th>Asymptote</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n > k) by exactly 1</td>
<td>(y = Q(x)), the quotient poly is O.A.</td>
</tr>
<tr>
<td>(n > k) by more than 1</td>
<td>no H.A. or O.A.</td>
</tr>
</tbody>
</table>
Note: Graphs can cross horizontal or oblique asymptotes, but they cannot cross vertical asymptotes!

Example 3: Find the horizontal and/or oblique asymptotes:

a) \(f(x) = \frac{5x}{x^2 - 9} \)

- \(n = \text{degree of numerator} = 1 \)
- \(k = \text{degree of denominator} = 2 \)
- \(n < k \Rightarrow \text{Line } y = 0 \text{ is the horizontal asymptote} \)

b) \(f(x) = \frac{5x^4 + 3x^2 + 2x - 8}{2x^2 + 2x - 8} \)

- \(n = \text{degree of numerator} = 4 \)
- \(k = \text{degree of denominator} = 2 \)
- \(n > k + 1 \Rightarrow \text{No horizontal asymptote} \)

No oblique asymptote as well

Example 4: For each of the following functions fill the table with the correct asymptote(s) equation(s), otherwise write none if the function does not have the particular asymptote.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Vertical Asymptote(s)</th>
<th>Horizontal Asymptote</th>
<th>Oblique Asymptote</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = \frac{2}{x - 4})</td>
<td>(x = 4 \text{ line})</td>
<td>(y = 0 \text{ line})</td>
<td>None</td>
</tr>
<tr>
<td>(f(x) = \frac{3x^2 + 1}{2x^2 - 4})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = \frac{x^4 + 2x^3 - 6x^2 - 2}{x^3 + 1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = \frac{-x^2 + 3x}{2x^2 - 4x - 6})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = \frac{3x^3 + 2x - 4}{x^2 - 4})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A) Find the **domain** and **range** and all **asymptotes** from the given graphs

1) \[y = \frac{x^3 - 3x^2 + 2x + 2}{x^2 - 9} \]

2) \[y = \frac{1}{x^2 + 1} \]
3) \[y = \frac{3x^2 - x}{x^2 - 4} \]

4) \[y = (-2)x(x-1)(2x-10)(3x-9)(2x+8)(3x+15). \] This is a polynomial function as well; find the degree, leading coefficient, constant term and zeros.
B) Sketch the graphs of the following rational functions.

a) \(f(x) = \frac{x}{x - 2} \)

b) \(f(x) = \frac{3x^2 + 1}{2x^2 - 4} \)

c) \(f(x) = \frac{3x^3 + 2x - 4}{x^2 - 4} \)

d) \(f(x) = \frac{-x^2 + 3x}{2x^2 - 4x - 6} \)

e) \(f(x) = \frac{5x}{x^2 - 9} \)

f) \(f(x) = \frac{x^2 - 16}{x - 4} \)

Homework Practice Problems
Exercises 4.1.1: Page 314 #1 – 21 (odd numbers),

OER West Texas A&M Tutorial 40: [Graphs of Rational Functions](https://www.youtube.com/watch?v=2N62v_63SBo)

Tutorial 41: [Practice Test on Tutorials 34 - 40](https://www.youtube.com/watch?v=P0ZggqB44Do4)

Examples YouTube videos
- Asymptotes of rational functions: https://www.youtube.com/watch?v=2N62v_63SBo
- Finding vertical and horizontal asymptotes: https://www.youtube.com/watch?v=P0ZggqB44Do4
- Rational functions graphs 1: https://www.youtube.com/watch?v=ReEMqdZEEX0
- Graphs of rational functions 2: https://www.youtube.com/watch?v=p7vcTWq6BFk